Functions and Program Structure

This lecture deals with functions and program
structure.

Chapter 4 K& R

Functions and Program Structure

The idea of a function is a key structuring principle in the
construction of any C program.

Any computation of a C program is broken into several
functions and each function performs a simple well-defined
task.

Functions are often shared across programs, a function
designed in the context of a particular program finds use in
another program.

Role of Functions

The idea of a function is a key structuring principle in the
construction of any C program.

Any computation of a C program is broken into several
functions and each function performs a simple well-defined
task.

Functions are often shared across programs, a function
designed in the context of a particular program finds use in
another program.

Function as an Abstraction

Function is also a unit of abstraction, it is unnecessary to
know how it works in order to use it.

C promotes the view that a program is built from
several small functions rather than a few large functions.

So functions not only keep the complexity of the program
under control (program easier to modify, maintain, debug
use) but also promote 'sharing' (functions built by one user
can be used by another for a different purpose)

Function Definition - An Example

[* function to calculate greatest common divisor
of two nonnegative integers */

intged (intu,intv) /* uandv formal parameters */

{

int tmp; [* tmp automatic variable */
while (v I= 0) {
tmp = u % v;
u=v;
v = tmp;
}
return (u) ;

}

Function Definition Syntax

return-type function-name (argument declarations)

{

declarations and statements

}

Various parts may be absent; a minimal function is

dummy() {}
which does nothing and returns nothing.

If the return type is omitted, int is assumed.

In C all function arguments are passed by value.
Function definitions can appear in any order, and in one
source file or several , although no function can be split
between files.

Return statement

The return statement is a mechanism for returning a value from the
called function to its caller.

Any expression can follow return:
return expression;

The expression will be converted to the return type of the function
if necessary.

The called function is free to ignore the returned value. Also there
IS no need for any expression after return.

Control also returns to the caller with no value when the execution
"falls off the end" of the function by reaching the closing right
brace.

Function - Example (K&R page 24)

#include <stdio.h>
int power(int m, int n); /* function declaration */

[* to test power function */
main()

{
int I
for(i = 0; i < 10; ++i)
printf("%d %d\n", i, power(2, i));
return O;

Function - Example (K&R page 25)

[* power: raise base to n-th power; n >= 0 */

int power(int base, int n);

{
int 1, p;
p=1
for(i = 0; i < n; ++i)
P = p * base;
return p;

Automatic Variables

Variables that are private or local to a function are called
automatic variables.

No other function can have direct access to them.

Each local variable comes into existence when the function
is called and disappears when the function is exited.

So they do not retain their values from one function call to
the next.

e.g. in the function power(), the variables i and p are
automatic.

External Variables

External variables are defined outside of any function.
External variables are globally accessable.

Functions are always external because in C functions cannot
be defined inside other funtions.

External variables and functions can be defined to be visible
only within a single file.

External variables are permanent and they retain their values
from one function invocation to the next.

External Variables - Examples

[* infile main.c */
int 1 = 5;

main()

{
printf ("%d ", i);
foo ();
printf ("%d\n", i);

[* infile foo.c */
external int i
foo()

{
}

I = 100;

Static vs External

If a variable is defined outside of any function,
qualifier static restricts the visibilty of the variable to
the file containing its definition.

Static vs External

[* in file mod1.c */

double x;
static double result;

static void dosquare ()

{

double square ();
x = 2.0;
result = square ();

}

main()

{

dosquare();
printf ("%f\n", result);

[* infile mod2.c */

extern double X;

double square ()

{

retun (x * X);

Header Files

The definitions and declarations shared among the files may
be centralized as much as possible so that there is only one
copy to get right and keep right as the program evolves.

This common information is kept in a header that ends in .h
For programs of moderate size it is better to have one
header file that contains everything that is needed to be
shared between any twoparts in the parts in the program.

The header file is included using the #include <filename.h>

C Preprocessor

Key features of the C preprocessor are

#include - to include a file during compilation
#define - to replace a token by an arbitrary sequence of
characters.

#include "filename" vs #include <filename>

#include is a preferred way to tie the declarations together for a
large program. It guarentees that all the source files will be
supplied with the same definitions and variable declarations.

When an included file is changed, all the files that depend on it
must be recompiled.

Files that are included by #include directive may themselves
contain #include directives.

C Preprocessor

#define provides a simple macro substitution facility.
It is commonly used to parametrize a program

#define MAXLENGTH 100

char linebuffer [MAXLENGTHI:

for(i = 0. i < MAXLENGTH; i++) {
:

Macros may be parameterized.
#define MAX (a, b) (a > b? a:b)

I =MAX (j, 20);
will expand to
i = (> 207 j. 20);

Recursion

Recursive function is defined in terms of itself.

Functions in C may be used recursively i.e, a function may call
itself either directly or indirectly.

It is a convenient and elegant programming technique when
used with care.

Recursion - Example

#include <stdio.h>
[* printd: print nindecimal */

void printd (int n)

{
if (n/ 10)
printd (n / 10);
putchar (n % 10 + '0");
}

Note that each invocation of printd gets a fresh set of alll
automatic variables

