
Sebastian Raschka           STAT 479: Deep Learning            SS 2019 �1

STAT 479: Deep Learning, Spring 2019 
Sebastian Raschka 

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 12

Common Optimization Algorithms

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/


Sebastian Raschka           STAT 479: Deep Learning            SS 2019 !2

Part 1 (before Spring break) 

• Input Normalization (BatchNorm, InstanceNorm, GroupNorm, 
LayerNorm) 

• Weight Initialization (Xavier, Kaiming He) 

Part 2 (this lecture) 

• Learning Rate Decay 

• Momentum Learning 

• Adaptive Learning 

Overview: Additional Tricks for  
Neural Network Training (Part 2/2)
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Part 1 (before Spring break) 

• Input Normalization (BatchNorm, InstanceNorm, GroupNorm, 
LayerNorm) 

• Weight Initialization (Xavier, Kaiming He) 

Part 2 (this lecture) 

• Learning Rate Decay 

• Momentum Learning 

• Adaptive Learning 

Overview: Additional Tricks for  
Neural Network Training (Part 2/2)

(Modifications of the 1st order SGD optimization 
algorithm; 2nd order methods are rarely used in DL)
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Minibatch Learning Recap
• Minibatch learning is a form of 

stochastic gradient descent 

• Each minibatch can be considered a 
sample drawn from the training set 
(where the training set is in turn a 
sample drawn from the population) 

• Hence, the gradient is noisier

• A noisy gradient can be 

✦ good: chance to escape local minima  

✦ bad: can lead to extensive oscillation

• Main advantage: Convergence speed, 
because it offers to opportunities for 
parallelism (do you recall what these are?)
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Minibatch Learning Recap
• Minibatch learning is a form of 

stochastic gradient descent 

• Each minibatch can be considered a 
sample drawn from the training set 
(where the training set is in turn a 
sample drawn from the population) 

• Hence, the gradient is noisier

• A noisy gradient can be 

✦ good: chance to escape local minima  

✦ bad: can lead to extensive oscillation

• Main advantage: Convergence speed, 
because it offers to opportunities for 
parallelism (do you recall what these are?)

• Note that second order methods that  
take e.g., gradient curvature into account 
usually don't work so well in practice 
and are not often used/recommended in DL



Sebastian Raschka           STAT 479: Deep Learning            SS 2019 !6

https://vis.ensmallen.org

Nice Library & Visualization Tool

High Learning Rate

https://vis.ensmallen.org
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Practical Tip for Minibatch Use
• Reasonable minibatch sizes are usually: 32, 64, 128, 256, 512, 1024 (in the last 

lecture, we discussed why powers of 2 are a common convention) 

• Usually, you can choose a batch size that is as large as your GPU memory allows 
(matrix-multiplication and the size of fully-connected layers are usually the bottleneck) 

• Practical tip: usually, it is a good idea to also make the batch size proportional to the 
number of classes in the dataset

All samples (n = 150)

Training samples (n = 100) Test samples (n = 50)

Figure 1: Distribution of Iris flower classes upon random subsampling into training and test sets.

In the worst-case scenario, the test set may not contain any instance of a minority class at all. Thus,
a recommended practice is to divide the dataset in a stratified fashion. Here, stratification simply
means that we randomly split a dataset such that each class is correctly represented in the resulting
subsets (the training and the test set) – in other words, stratification is an approach to maintain the
original class proportion in resulting subsets.

It shall be noted that random subsampling in non-stratified fashion is usually not a big concern when
working with relatively large and balanced datasets. However, in my opinion, stratified resampling is
usually beneficial in machine learning applications. Moreover, stratified sampling is incredibly easy
to implement, and Ron Kohavi provides empirical evidence [Kohavi, 1995] that stratification has a
positive effect on the variance and bias of the estimate in k-fold cross-validation, a technique that
will be discussed later in this article.

1.5 Holdout Validation

Before diving deeper into the pros and cons of the holdout validation method, Figure 2 provides a
visual summary of this method that will be discussed in the following text.

Step 1. First, we randomly divide our available data into two subsets: a training and a test set.
Setting test data aside is a work-around for dealing with the imperfections of a non-ideal world, such
as limited data and resources, and the inability to collect more data from the generating distribution.
Here, the test set shall represent new, unseen data to the model; it is important that the test set is only
used once to avoid introducing bias when we estimating the generalization performance. Typically,
we assign 2/3 to the training set and 1/3 of the data to the test set. Other common training/test splits
are 60/40, 70/30, or 80/20 – or even 90/10 if the dataset is relatively large.

Step 2. After setting test examples aside, we pick a learning algorithm that we think could be
appropriate for the given problem. As a quick reminder regarding the Hyperparameter Values depicted
in Figure 2, hyperparameters are the parameters of our learning algorithm, or meta-parameters. And
we have to specify these hyperparameter values manually – the learning algorithm does not learn
these from the training data in contrast to the actual model parameters. Since hyperparameters are not

8

Raschka, S. (2018). Model evaluation, model selection, and 
algorithm selection in machine learning. arXiv preprint 
arXiv:1811.12808.
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Learning Rate Decay

• Batch effects -- minibatches are samples of the training set,  
hence minibatch loss and gradients are approximations  

• Hence, we usually get oscillations 

• To dampen oscillations towards the end of the training, we can decay the 
learning rate
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Learning Rate Decay

• Batch effects -- minibatches are samples of the training set,  
hence minibatch loss and gradients are approximations  

• Hence, we usually get oscillations 

• To dampen oscillations towards the end of the training, we can decay the 
learning rate

Danger of learning rate is 
to decrease the learning rate too early 
 
Practical tip: try to train the model 
without learning rate decay first, 
then add it later 

You can also use the validation 
performance (e.g., accuracy) to 
judge whether lr decay is useful 
(as opposed to using the training loss)
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Learning Rate Decay

Most common variants for learning rate decay: 

⌘t := ⌘0 · e�k·t
<latexit sha1_base64="y1QN6zUteveq7skV4o5wfP7j9R0=">AAACDnicbZC7SgNBFIZn4y3G26qlzWAI2Bh2o6AIQtDGMoK5QBLD7OQkGTJ7YeasEJY8gY2vYmOhiK21nW/jJNlCE38Y+PjPOZw5vxdJodFxvq3M0vLK6lp2PbexubW9Y+/u1XQYKw5VHspQNTymQYoAqihQQiNSwHxPQt0bXk/q9QdQWoTBHY4iaPusH4ie4AyN1bELLUDWQXpxSafk0BbvhkjhPjkepozjjp13is5UdBHcFPIkVaVjf7W6IY99CJBLpnXTdSJsJ0yh4BLGuVasIWJ8yPrQNBgwH3Q7mZ4zpgXjdGkvVOYFSKfu74mE+VqPfM90+gwHer42Mf+rNWPsnbcTEUQxQsBni3qxpBjSSTa0KxRwlCMDjCth/kr5gCnG0SSYMyG48ycvQq1UdE+KpdvTfPkqjSNLDsghOSIuOSNlckMqpEo4eSTP5JW8WU/Wi/VufcxaM1Y6s0/+yPr8AdcImrk=</latexit>

1) Exponential Decay:

where k is the decay rate 
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Learning Rate Decay

Most common variants for learning rate decay: 

2) Halving the learning rate:
⌘t := ⌘t=1/2

<latexit sha1_base64="t44KAPb8xKt82e77iE2j/UVPpnY=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBFc1qYIiFIpuXFawF2hDmEwn7dDJhZkToYS68VXcuFDErW/hzrdxmmahrT8MfPznHM6c34sFV2BZ30ZhaXllda24XtrY3NreMXf3WipKJGVNGolIdjyimOAhawIHwTqxZCTwBGt7o5tpvf3ApOJReA/jmDkBGYTc55SAtlzzoMeAuICvajijFGr2BJ/iqmuWrYqVCS+CnUMZ5Wq45levH9EkYCFQQZTq2lYMTkokcCrYpNRLFIsJHZEB62oMScCUk2YXTPCxdvrYj6R+IeDM/T2RkkCpceDpzoDAUM3XpuZ/tW4C/qWT8jBOgIV0tshPBIYIT+PAfS4ZBTHWQKjk+q+YDokkFHRoJR2CPX/yIrSqFfusUr07L9ev8ziK6BAdoRNkowtUR7eogZqIokf0jF7Rm/FkvBjvxsestWDkM/voj4zPH9IalS8=</latexit>

3) Inverse decay:

⌘t :=
⌘0

1 + k · t
<latexit sha1_base64="CMVLJdUk7lm/xR6VZzLL2r/6azA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiCUJIqKIJQdOOygn1AU8JkMmmHTiZh5kYooX/gxl9x40IRt27d+TdOHwttPXDhzDn3MveeIBVcg+N8WwuLS8srq4W14vrG5ta2vbPb0EmmKKvTRCSqFRDNBJesDhwEa6WKkTgQrBn0b0Z+84EpzRN5D4OUdWLSlTzilICRfPvIY0B8wJdX2IsUofn47QxzF5/gPvZomACGoW+XnLIzBp4n7pSU0BQ13/7ywoRmMZNABdG67TopdHKigFPBhkUv0ywltE+6rG2oJDHTnXx8zxAfGiXEUaJMScBj9fdETmKtB3FgOmMCPT3rjcT/vHYG0UUn5zLNgEk6+SjKBIYEj8LBIVeMghgYQqjiZldMe8TEAibCognBnT15njQqZfe0XLk7K1Wvp3EU0D46QMfIReeoim5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCRB5sZ</latexit>
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Learning Rate Decay

There are many, many more 

E.g., Cyclical Learning Rate
Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer 
Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017.

the learning rate to rise and fall is beneficial overall
even though it might temporarily harm the network’s
performance.

3. Cyclical learning rates are demonstrated with ResNets,
Stochastic Depth networks, and DenseNets on the
CIFAR-10 and CIFAR-100 datasets, and on ImageNet
with two well-known architectures: AlexNet [17] and
GoogleNet [25].

2. Related work
The book “Neural Networks: Tricks of the Trade” is a

terrific source of practical advice. In particular, Yoshua
Bengio [2] discusses reasonable ranges for learning rates
and stresses the importance of tuning the learning rate. A
technical report by Breuel [3] provides guidance on a vari-
ety of hyper-parameters. There are also a numerous web-
sites giving practical suggestions for setting the learning
rates.

Adaptive learning rates: Adaptive learning rates can be
considered a competitor to cyclical learning rates because
one can rely on local adaptive learning rates in place of
global learning rate experimentation but there is a signifi-
cant computational cost in doing so. CLR does not possess
this computational costs so it can be used freely.

A review of the early work on adaptive learning rates can
be found in George and Powell [6]. Duchi, et al. [5] pro-
posed AdaGrad, which is one of the early adaptive methods
that estimates the learning rates from the gradients.

RMSProp is discussed in the slides by Geoffrey Hinton2

[27]. RMSProp is described there as “Divide the learning
rate for a weight by a running average of the magnitudes
of recent gradients for that weight.” RMSProp is a funda-
mental adaptive learning rate method that others have built
on.

Schaul et al. [22] discuss an adaptive learning rate based
on a diagonal estimation of the Hessian of the gradients.
One of the features of their method is that they allow their
automatic method to decrease or increase the learning rate.
However, their paper seems to limit the idea of increasing
learning rate to non-stationary problems. On the other hand,
this paper demonstrates that a schedule of increasing the
learning rate is more universally valuable.

Zeiler [29] describes his AdaDelta method, which im-
proves on AdaGrad based on two ideas: limiting the sum
of squared gradients over all time to a limited window, and
making the parameter update rule consistent with a units
evaluation on the relationship between the update and the
Hessian.

More recently, several papers have appeared on adaptive
learning rates. Gulcehre and Bengio [9] propose an adaptive
learning rate algorithm, called AdaSecant, that utilizes the

2www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf

root mean square statistics and variance of the gradients.
Dauphin et al. [4] show that RMSProp provides a biased
estimate and go on to describe another estimator, named
ESGD, that is unbiased. Kingma and Lei-Ba [16] introduce
Adam that is designed to combine the advantages from Ada-
Grad and RMSProp. Bache, et al. [1] propose exploiting
solutions to a multi-armed bandit problem for learning rate
selection. A summary and tutorial of adaptive learning rates
can be found in a recent paper by Ruder [20].

Adaptive learning rates are fundamentally different from
CLR policies, and CLR can be combined with adaptive
learning rates, as shown in Section 4.1. In addition, CLR
policies are computationally simpler than adaptive learning
rates. CLR is likely most similar to the SGDR method [18]
that appeared recently.

3. Optimal Learning Rates
3.1. Cyclical Learning Rates

The essence of this learning rate policy comes from the
observation that increasing the learning rate might have a
short term negative effect and yet achieve a longer term ben-
eficial effect. This observation leads to the idea of letting the
learning rate vary within a range of values rather than adopt-
ing a stepwise fixed or exponentially decreasing value. That
is, one sets minimum and maximum boundaries and the
learning rate cyclically varies between these bounds. Ex-
periments with numerous functional forms, such as a trian-
gular window (linear), a Welch window (parabolic) and a
Hann window (sinusoidal) all produced equivalent results
This led to adopting a triangular window (linearly increas-
ing then linearly decreasing), which is illustrated in Figure
2, because it is the simplest function that incorporates this
idea. The rest of this paper refers to this as the triangular
learning rate policy.

Figure 2. Triangular learning rate policy. The blue lines represent
learning rate values changing between bounds. The input parame-
ter stepsize is the number of iterations in half a cycle.

An intuitive understanding of why CLR methods
work comes from considering the loss function topology.
Dauphin et al. [4] argue that the difficulty in minimizing the
loss arises from saddle points rather than poor local minima.

465

(which, I found, didn't work well at all in practice, unfortunately -- at least in my case)

https://ieeexplore.ieee.org/abstract/document/7926641/
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Some Live News

The Turing Award is 
generally recognized as 
the highest distinction 
in computer science and 
the "Nobel Prize of 
computing". ... Since 
2014, the award has 
been accompanied by a 
prize of US $1 million
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Learning Rate Decay in PyTorch

def adjust_learning_rate(optimizer, epoch, initial_lr, decay_rate):
    """Exponential decay every 10 epochs"""
    if not epoch % 10:
        lr = initial_lr * torch.exp(-decay_rate*epoch)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

Option 1. Just call your own function at the end of each epoch:
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Learning Rate Decay in PyTorch
Option 2. Use one of the built-in tools in PyTorch:

Source: https://pytorch.org/docs/stable/optim.html

(many more available)
(Here, the most generic version.)

https://pytorch.org/docs/stable/optim.html
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Learning Rate Decay in PyTorch
#################################
### Model Initialization
#################################
    
torch.manual_seed(RANDOM_SEED)
model = MLP(num_features=28*28,
            num_hidden=100,
            num_classes=10)

model = model.to(DEVICE)

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

#################################
### LEARNING RATE SCHEDULER
#################################

scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 
                                                   gamma=0.1,
                                                   last_epoch=-1)

...

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

Example, part 1/2

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb
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Learning Rate Decay in PyTorch

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

for epoch in range(5):
    model.train()
    for batch_idx, (features, targets) in enumerate(train_loader):
        
        features = features.view(-1, 28*28).to(DEVICE)
        targets = targets.to(DEVICE)
            
        ### FORWARD AND BACK PROP
        logits, probas = model(features)

        #cost = F.nll_loss(torch.log(probas), targets)
        cost = F.cross_entropy(logits, targets)
        optimizer.zero_grad()
        
        cost.backward()
        minibatch_cost.append(cost)
        ### UPDATE MODEL PARAMETERS
        
        optimizer.step()
        
        ### LOGGING
        if not batch_idx % 50:
            print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f' 
                   %(epoch+1, NUM_EPOCHS, batch_idx, 
                     len(train_loader), cost))
        
    ##########################
    ### Update Learning Rate
    scheduler.step() # don't have to do it every epoch!
    ##########################
    
    model.eval()

Example, part 2/2

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb
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Saving Models in PyTorch

Learning rate schedulers 
have the advantage that we 
can also simply save their 
state for reuse  
(e.g., saving and continuing 
training later)

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L12_optim/lr_scheduler_and_saving_models.ipynb
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Weight Initialization Experiments (Last-lecture-follow-up)

def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.uniform_(m.weight.detach(), -0.1, 0.1)
        torch.zero_(m.bias.detach())

model.apply(weights_init)

Uniform: Test accuracy 97.63% Normal: Test accuracy 97.76%
def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.normal_(m.weight.detach(), mean=0, std=0.1)
        torch.zero_(m.bias.detach())
    
model.apply(weights_init)

Default: Test accuracy 97.77%

Xavier Normal: Test accuracy 97.69% Xavier Uniform: Test accuracy 97.36%

He Normal: Test accuracy 97.67% He Uniform: Test accuracy 97.54%
def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.kaiming_normal_(m.weight)
        torch.zero_(m.bias.detach())
    
model.apply(weights_init)

def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.kaiming_uniform_(m.weight)
        torch.zero_(m.bias.detach())
    
model.apply(weights_init)

def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.xavier_normal_(m.weight)
        torch.zero_(m.bias.detach())
    
model.apply(weights_init)

def weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        torch.nn.init.xavier_uniform_(m.weight)
        torch.zero_(m.bias.detach())
    
model.apply(weights_init)

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L13_intro-cnn/code/cnn-with-diff-init

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L13_intro-cnn/code/cnn-with-diff-init
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Training with "Momentum"

Source: https://en.wikipedia.org/wiki/Momentum

• Momentum is a jargon term in DL and is probably a misnomer in this context 

• Concept: In momentum learning, we try to accelerate convergence by dampening 
oscillations using "velocity" (the speed of the "movement" from previous updates)

https://en.wikipedia.org/wiki/Momentum
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Training with "Momentum"
• Momentum is a jargon term in DL and is probably a misnomer in this context 

• Concept: In momentum learning, we try to accelerate convergence by 
dampening oscillations using "velocity" (the speed of the "movement" from 
previous updates)

Without momentum With momentum
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Training with "Momentum"

Without momentum With momentum

Key take-away:  
Not only move in the (opposite) direction of the gradient, but also  
move in the "averaged" direction of the last few updates  
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Training with "Momentum"

Key take-away:  
Not only move in the (opposite) direction of the gradient, but also  
move in the "averaged" direction of the last few updates  

Helps with dampening oscillations, but also helps with escaping  
local minima traps
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�wi,j(t) := ↵ ·�wi,j(t� 1) + ⌘ · @L
@wi,j

(t)
<latexit sha1_base64="z07XiIX0nYQ7L9u4xfm0qJW6RzA="></latexit>

wi,j(t+ 1) := wi,j(t)��wi,j(t)
<latexit sha1_base64="YXpNve4YJpwcqXgxHZOK0YTWgHI=">AAACIHicbZDJSgNBEIZ74hbjFvXopTEICWqYiUJEEIJ68BjBLJAMQ0+nY9r0LHTXKGHIo3jxVbx4UERv+jR2lkMWf2j4+aqK6vrdUHAFpvljJBYWl5ZXkquptfWNza309k5VBZGkrEIDEci6SxQT3GcV4CBYPZSMeK5gNbd7NajXHplUPPDvoBcy2yP3Pm9zSkAjJ12Mn/pOzI/wQz8Lh1YOn1/gSZTDx7h5zQSQaeykM2beHArPG2tsMmisspP+brYCGnnMByqIUg3LDMGOiQROBeunmpFiIaFdcs8a2vrEY8qOhwf28YEmLdwOpH4+4CGdnIiJp1TPc3WnR6CjZmsD+F+tEUH7zI65H0bAfDpa1I4EhgAP0sItLhkF0dOGUMn1XzHtEEko6ExTOgRr9uR5Uy3krZN84fY0U7ocx5FEe2gfZZGFiqiEblAZVRBFz+gVvaMP48V4Mz6Nr1FrwhjP7KIpGb9/h5GguQ==</latexit>

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of 
the International Neural Network Society, 12(1), 145–151. http://doi.org/10.1016/S0893-6080(98)00116-6

Usually, we choose a 
momentum rate between 0.9 
and 0.999; you can think of 
it as a "friction" or 
"dampening" parameter

Often referred to as "velocity" v

Regular partial derivative/
gradient multiplied by 
learning rate at current time 
step t

Training with "Momentum"

"velocity" from the previous 
iteration

Weight update using the velocity vector:

http://doi.org/10.1016/S0893-6080(98)00116-6


Sebastian Raschka           STAT 479: Deep Learning            SS 2019  25

Source: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/
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Source: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html
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v = momentum * v + (1-dampening) * gradientW 
W = W - lr * v

Note that the optional "dampening" term is used as follows:

Also note that in PyTorch, the learning rate is also applied to the momentum terms, instead 
of the original definition, which would be

v = momentum * v + (1-dampening) * lr * gradientW 
W = W - v
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A Better Momentum Method: 
Nesterov Accelerated Gradient

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). 
Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543– 547.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in 
deep learning. ICML (3), 28(1139-1147), 5.

Similar to momentum learning, but performs a correction after the update (based on 
where the loss, w.r.t. the weight parameters, is approx. going to be after the update)

�wt := ↵ ·�wt�1 + ⌘ ·rwL(wt)
<latexit sha1_base64="eCwFYGwYvEYsVU3Mk9MV2pdVlys="></latexit>

�wt := ↵ ·�wt�1 + ⌘ ·rwL(wt � ↵ ·�wt�1)
<latexit sha1_base64="FqbINXlwj/MZJ0IOeTftLJO8PRk=">AAAChnicjVFNa9tAEF3JTes4aeukx1yWmkJCiJGclpRAwbQ55NCDC3USsIwYrUfxktVK7I5SjNBP6Z/qLf8m6w+SJu6hDxYeb97wZmeSQklLQXDn+Y0XGy9fNTdbW9uv37xt7+xe2Lw0AociV7m5SsCikhqHJEnhVWEQskThZXLzbV6/vEVjZa5/0qzAcQbXWqZSADkpbv+OzlAR8CgDmiZp9auOiZ9+4RGoYupkMcmJr3sqOgprfsgjpAeThkRBXD266mWHAFV9r/efJBz9V8BB3O4E3WABvk7CFemwFQZx+080yUWZoSahwNpRGBQ0rsCQFArrVlRaLEDcwDWOHNWQoR1XizXW/INTJjzNjXua+EL9u6OCzNpZljjnfFD7vDYX/1UblZR+HldSFyWhFsugtFSccj6/CZ9Ig4LUzBEQRrpZuZiCAUHuci23hPD5l9fJRa8bHnd7Pz52+l9X62iyPfae7bOQnbA+O2cDNmTCa3gHXs879pt+1//knyytvrfqeceewO/fA0e4w4w=</latexit>

Before:

Nesterov:

wt+1 := wt ��wt
<latexit sha1_base64="jYGBmEpYm67dqV9DQtmZmwMarY8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJakCkpBKOrCZQV7gSaUyXTSDp1cmDlRSsi7uPFV3LhQihsXvovTy8K2/jDw851zmHN+LxZcgWV9G0vLK6tr67mN/ObW9s6uubdfV1EiKavRSESy6RHFBA9ZDTgI1owlI4EnWMPr347qjScmFY/CRxjEzA1IN+Q+pwQ0aptlJyDQ8/z0OWuncGpnuHyNZ1iGz7BzxwSQOd42C1bRGgsvGntqCmiqatscOp2IJgELgQqiVMu2YnBTIoFTwbK8kygWE9onXdbSNiQBU246vjHDx5p0sB9J/ULAY/p3IiWBUoPA052jLdV8bQT/q7US8K/clIdxAiykk4/8RGCI8Cgw3OGSURADbQiVXO+KaY9IQkHHmtch2PMnL5p6qWifF0sPF4XKzTSOHDpER+gE2egSVdA9qqIaougFvaEP9Gm8Gu/G0PiatC4Z05kDNCPj5xex76Tx</latexit>

wt+1 := wt ��wt
<latexit sha1_base64="jYGBmEpYm67dqV9DQtmZmwMarY8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJakCkpBKOrCZQV7gSaUyXTSDp1cmDlRSsi7uPFV3LhQihsXvovTy8K2/jDw851zmHN+LxZcgWV9G0vLK6tr67mN/ObW9s6uubdfV1EiKavRSESy6RHFBA9ZDTgI1owlI4EnWMPr347qjScmFY/CRxjEzA1IN+Q+pwQ0aptlJyDQ8/z0OWuncGpnuHyNZ1iGz7BzxwSQOd42C1bRGgsvGntqCmiqatscOp2IJgELgQqiVMu2YnBTIoFTwbK8kygWE9onXdbSNiQBU246vjHDx5p0sB9J/ULAY/p3IiWBUoPA052jLdV8bQT/q7US8K/clIdxAiykk4/8RGCI8Cgw3OGSURADbQiVXO+KaY9IQkHHmtch2PMnL5p6qWifF0sPF4XKzTSOHDpER+gE2egSVdA9qqIaougFvaEP9Gm8Gu/G0PiatC4Z05kDNCPj5xex76Tx</latexit>
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A Better Momentum Method: 
Nesterov Accelerated Gradient

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in 
deep learning. ICML (3), 28(1139-1147), 5.

On the importance of initialization and momentum in deep learning

certain situations. In particular, for general smooth
(non-strongly) convex functions and a deterministic
gradient, NAG achieves a global convergence rate of
O(1/T 2) (versus the O(1/T ) of gradient descent), with
constant proportional to the Lipschitz coe�cient of the
derivative and the squared Euclidean distance to the
solution. While NAG is not typically thought of as a
type of momentum, it indeed turns out to be closely re-
lated to classical momentum, di↵ering only in the pre-
cise update of the velocity vector v, the significance of
which we will discuss in the next sub-section. Specifi-
cally, as shown in the appendix, the NAG update may
be rewritten as:

vt+1 = µvt � "rf(✓t + µvt) (3)

✓t+1 = ✓t + vt+1 (4)

While the classical convergence theories for both meth-
ods rely on noiseless gradient estimates (i.e., not
stochastic), with some care in practice they are both
applicable to the stochastic setting. However, the the-
ory predicts that any advantages in terms of asymp-
totic local rate of convergence will be lost (Orr, 1996;
Wiegerinck et al., 1999), a result also confirmed in ex-
periments (LeCun et al., 1998). For these reasons,
interest in momentum methods diminished after they
had received substantial attention in the 90’s. And be-
cause of this apparent incompatibility with stochastic
optimization, some authors even discourage using mo-
mentum or downplay its potential advantages (LeCun
et al., 1998).

However, while local convergence is all that matters
in terms of asymptotic convergence rates (and on cer-
tain very simple/shallow neural network optimization
problems it may even dominate the total learning
time), in practice, the “transient phase” of convergence
(Darken & Moody, 1993), which occurs before fine lo-
cal convergence sets in, seems to matter a lot more
for optimizing deep neural networks. In this transient
phase of learning, directions of reduction in the ob-
jective tend to persist across many successive gradient
estimates and are not completely swamped by noise.

Although the transient phase of learning is most no-
ticeable in training deep learning models, it is still no-
ticeable in convex objectives. The convergence rate
of stochastic gradient descent on smooth convex func-
tions is given by O(L/T + �/

p
T ), where � is the

variance in the gradient estimate and L is the Lip-
shits coe�cient of rf . In contrast, the convergence
rate of an accelerated gradient method of Lan (2010)
(which is related to but di↵erent from NAG, in that
it combines Nesterov style momentum with dual aver-
aging) is O(L/T 2 + �/

p
T ). Thus, for convex objec-

tives, momentum-based methods will outperform SGD
in the early or transient stages of the optimization
where L/T is the dominant term. However, the two
methods will be equally e↵ective during the final stages

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient

of the optimization where �/
p
T is the dominant term

(i.e., when the optimization problem resembles an es-
timation one).

2.1. The Relationship between CM and NAG

From Eqs. 1-4 we see that both CM and NAG compute
the new velocity by applying a gradient-based correc-
tion to the previous velocity vector (which is decayed),
and then add the velocity to ✓t. But while CM com-
putes the gradient update from the current position
✓t, NAG first performs a partial update to ✓t, comput-
ing ✓t + µvt, which is similar to ✓t+1, but missing the
as yet unknown correction. This benign-looking dif-
ference seems to allow NAG to change v in a quicker
and more responsive way, letting it behave more sta-
bly than CM in many situations, especially for higher
values of µ.

Indeed, consider the situation where the addition of
µvt results in an immediate undesirable increase in
the objective f . The gradient correction to the ve-
locity vt is computed at position ✓t + µvt and if µvt
is indeed a poor update, then rf(✓t + µvt) will point
back towards ✓t more strongly than rf(✓t) does, thus
providing a larger and more timely correction to vt

than CM. See fig. 1 for a diagram which illustrates
this phenomenon geometrically. While each iteration
of NAG may only be slightly more e↵ective than CM
at correcting a large and inappropriate velocity, this
di↵erence in e↵ectiveness may compound as the al-
gorithms iterate. To demonstrate this compounding,
we applied both NAG and CM to a two-dimensional
oblong quadratic objective, both with the same mo-
mentum and learning rate constants (see fig. 2 in the
appendix). While the optimization path taken by CM
exhibits large oscillations along the high-curvature ver-
tical direction, NAG is able to avoid these oscillations
almost entirely, confirming the intuition that it is much
more e↵ective than CM at decelerating over the course
of multiple iterations, thus making NAG more tolerant
of large values of µ compared to CM.

In order to make these intuitions more rigorous and

gradient  
term

momentum term

correction term (gradient of the point where you would 
have ended up via the standard momentum method) 
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A Better Momentum Method: 
Nesterov Accelerated Gradient

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in 
deep learning. ICML (3), 28(1139-1147), 5.
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Adaptive Learning Rates

• decrease learning if the gradient changes its direction 

• increase learning if the gradient stays consistent

Key take-aways:

There are many different flavors of adapting the learning rate  
(bit out of scope for this course to review them all)
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Adaptive Learning Rates

• decrease learning if the gradient changes its direction 

• increase learning if the gradient stays consistent

Key take-aways:

Step 1: Define a local gain (g) for each weight (initialized with g=1)

�wi,j := ⌘ · gi,j ·
@L
@wi,j

<latexit sha1_base64="NoawAABpSt+8PKqkCagS8PvKu/A="></latexit>
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Step 1: Define a local gain (g) for each weight (initialized with g=1)

�wi,j := ⌘ · gi,j ·
@L
@wi,j

<latexit sha1_base64="NoawAABpSt+8PKqkCagS8PvKu/A="></latexit>

Step 2:

gi,j(t) := gi,j(t� 1) + �
<latexit sha1_base64="zSTJaRlBybcJChwhNIJbeK2n2UQ=">AAACDHicbVDLSgMxFM3UV62vqks3wSK0qGWmCoogFN24rGAf0A4lk6ZtbOZBckcoQz/Ajb/ixoUibv0Ad/6NmekstPVA4Nxz7uXmHicQXIFpfhuZhcWl5ZXsam5tfWNzK7+901B+KCmrU1/4suUQxQT3WB04CNYKJCOuI1jTGV3HfvOBScV97w7GAbNdMvB4n1MCWurmC4NuxI/w/aQIJXxxiZMyro6tEj7EHYcB0V1m2UyA54mVkgJKUevmvzo9n4Yu84AKolTbMgOwIyKBU8EmuU6oWEDoiAxYW1OPuEzZUXLMBB9opYf7vtTPA5yovyci4io1dh3d6RIYqlkvFv/z2iH0z+2Ie0EIzKPTRf1QYPBxnAzucckoiLEmhEqu/4rpkEhCQeeX0yFYsyfPk0albJ2UK7enhepVGkcW7aF9VEQWOkNVdINqqI4oekTP6BW9GU/Gi/FufExbM0Y6s4v+wPj8AWQUmKk=</latexit>

gi,j(t) := gi,j(t� 1) · (1� �)
<latexit sha1_base64="VgTJ5W8ysLtb2+R/2t3af7rlx90=">AAACFHicbVDLSgMxFM3UV62vUZdugkVo0ZaZKiiCUHTjsoJ9QDsMmTRtYzMPkjtCGfoRbvwVNy4UcevCnX9jOu1CqwcC555zLzf3eJHgCizry8gsLC4tr2RXc2vrG5tb5vZOQ4WxpKxOQxHKlkcUEzxgdeAgWCuSjPieYE1veDXxm/dMKh4GtzCKmOOTfsB7nBLQkmse9t2EH+G7cQGK+PwCp+WkKtlF3KHdEHDBLnU8BqTomnmrbKXAf4k9I3k0Q801PzvdkMY+C4AKolTbtiJwEiKBU8HGuU6sWETokPRZW9OA+Ew5SXrUGB9opYt7odQvAJyqPycS4is18j3d6RMYqHlvIv7ntWPonTkJD6IYWECni3qxwBDiSUK4yyWjIEaaECq5/iumAyIJBZ1jTodgz5/8lzQqZfu4XLk5yVcvZ3Fk0R7aRwVko1NURdeohuqIogf0hF7Qq/FoPBtvxvu0NWPMZnbRLxgf38fmm4M=</latexit>

If gradient is consistent

else

Note that  
multiplying by a factor has a larger 
impact if gains are large, compared 
to adding a term 

(dampening effect if updates oscillate 
in the wrong direction)

Adaptive Learning Rates
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Adaptive Learning Rate via RMSProp

• Unpublished algorithm by Geoff Hinton (but very popular) based on Rprop [1] 

• Very similar to another concept called AdaDelta 

• Concept: divide learning rate by exponentially decreasing moving average of the squared  
gradients 

• This takes into account that gradients can vary widely in magnitude 

• Here, RMS stands for "Root Mean Squared" 

• Also, damps oscillations like momentum (but in practice, works a bit better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second International 
ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.
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Adaptive Learning Rate via RMSProp

MeanSquare(wi,j , t) := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

wi,j(t)

◆2

<latexit sha1_base64="Z+HVulkxbXVLEb22LThAtsPJsEs="></latexit>

moving average of the squared gradient for each weight

where beta is typically between 0.9 and 0.999 small epsilon term to  
avoid division by zero

wi,j(t) := wi,j(t)� ⌘ · @L
@wi,j(t)

/

✓q
MeanSquare (wi,j , t) + ✏

◆

<latexit sha1_base64="A5NHqNA9il5pfKg4MG0lXiIwqog="></latexit>
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Adaptive Learning Rate via ADAM

• ADAM (Adaptive Moment Estimation) is probably the most widely used 
optimization algorithm in DL as of today 

• It is a combination of the momentum method and RMSProp

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

�wi,j(t) := ↵ ·�wi,j(t� 1) + ⌘ · @L
@wi,j

(t)
<latexit sha1_base64="z07XiIX0nYQ7L9u4xfm0qJW6RzA="></latexit>

Momentum-like term:

RMSProp term:

MeanSquare(wi,j , t) := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

@wi,j(t)

◆2

<latexit sha1_base64="xD7HqadJJUMERTDKxAYmLw5cUVo="></latexit>

original momentum term

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80="></latexit>

mt�1
<latexit sha1_base64="BaUV/ky/esFoJzWPohpB2BYsCMs=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwY0jS0NZd0Y3LCvYBbSiT6aQdOjMJMxOhhH6EGxeKuPV73Pk3TtoKKnrgwuGce7n3njBhVGnH+bAKa+sbm1vF7dLO7t7+QfnwqKPiVGLSxjGLZS9EijAqSFtTzUgvkQTxkJFuOL3O/e49kYrG4k7PEhJwNBY0ohhpI3X5MNMX7nxYrjj2ZaPm+TXo2I5Tdz03J17dr/rQNUqOClihNSy/D0YxTjkRGjOkVN91Eh1kSGqKGZmXBqkiCcJTNCZ9QwXiRAXZ4tw5PDPKCEaxNCU0XKjfJzLElZrx0HRypCfqt5eLf3n9VEeNIKMiSTUReLkoShnUMcx/hyMqCdZsZgjCkppbIZ4gibA2CZVMCF+fwv9Jx7Pdqu3d+pXm1SqOIjgBp+AcuKAOmuAGtEAbYDAFD+AJPFuJ9Wi9WK/L1oK1mjkGP2C9fQJjC4+c</latexit>

mt
<latexit sha1_base64="vwwizZRkV2c/UM2DKTGBtXofbIw=">AAAB7HicdVBNS8NAEN34WetX1aOXxSJ4Ckka2norevFYwbSFNpTNdtMu3d2E3Y1QQn+DFw+KePUHefPfuGkrqOiDgcd7M8zMi1JGlXacD2ttfWNza7u0U97d2z84rBwdd1SSSUwCnLBE9iKkCKOCBJpqRnqpJIhHjHSj6XXhd++JVDQRd3qWkpCjsaAxxUgbKeDDXM+HlapjXzbrnl+Hju04DddzC+I1/JoPXaMUqIIV2sPK+2CU4IwToTFDSvVdJ9VhjqSmmJF5eZApkiI8RWPSN1QgTlSYL46dw3OjjGCcSFNCw4X6fSJHXKkZj0wnR3qifnuF+JfXz3TcDHMq0kwTgZeL4oxBncDicziikmDNZoYgLKm5FeIJkghrk0/ZhPD1KfyfdDzbrdnerV9tXa3iKIFTcAYugAsaoAVuQBsEAAMKHsATeLaE9Wi9WK/L1jVrNXMCfsB6+wSGqY8q</latexit>
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Adaptive Learning Rate via ADAM

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

RMSProp term:

ADAM update:

r := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

@wi,j(t)

◆2

<latexit sha1_base64="35mB82DfqUC86OS0JSfG/tTONkc="></latexit>

�wi,j(t) := ↵ ·�wi,j(t� 1) + ⌘ · @L
@wi,j

(t)
<latexit sha1_base64="z07XiIX0nYQ7L9u4xfm0qJW6RzA="></latexit>

Momentum-like term:

original momentum term

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80="></latexit>

wi,j := wi,j � ⌘
mtp
r + ✏

<latexit sha1_base64="ybbslpsrNYZDlLvaddWDralrgAc=">AAACH3icbZBNS8NAEIY3flu/qh69LBZBUEuioiIIohePFawKTQmb7URXN5u4O1FKyD/x4l/x4kER8dZ/47ZW8OuFhYd3ZpidN0ylMOi6HWdgcGh4ZHRsvDQxOTU9U56dOzVJpjnUeSITfR4yA1IoqKNACeepBhaHEs7C68Nu/ewWtBGJOsF2Cs2YXSgRCc7QWkF56y7IxSq9Kuju3heu+YCM+pFmPI8DLHLf3GjMdbHiQ2qETFQRlCtu1e2J/gWvDxXSVy0ov/uthGcxKOSSGdPw3BSbOdMouISi5GcGUsav2QU0LCoWg2nmvfsKumSdFo0SbZ9C2nO/T+QsNqYdh7YzZnhpfte65n+1RobRTjMXKs0QFP9cFGWSYkK7YdGW0MBRti0wroX9K+WXzOaCNtKSDcH7ffJfOF2vehvV9ePNyv5BP44xskAWyTLxyDbZJ0ekRuqEk3vySJ7Ji/PgPDmvzttn64DTn5knP+R0PgCGDqNY</latexit>
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Adaptive Learning Rate via ADAM

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �

t
1 and �

t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1,�2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0  0 (Initialize 1st moment vector)
v0  0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do
t t+ 1
gt  r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt  �1 ·mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt  �2 · vt�1 + (1� �2) · g2t (Update biased second raw moment estimate)
bmt  mt/(1� �

t
1) (Compute bias-corrected first moment estimate)

bvt  vt/(1� �
t
2) (Compute bias-corrected second raw moment estimate)

✓t  ✓t�1 � ↵ · bmt/(
p
bvt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1,�2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates bmt and bvt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

p
1� �t

2/(1� �
t
1) and ✓t  ✓t�1 � ↵t ·mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · bmt/

p
bvt. The effective stepsize has

two upper bounds: |�t|  ↵ · (1 � �1)/
p
1� �2 in the case (1 � �1) >

p
1� �2, and |�t|  ↵

2

Also add a bias correction term 
for better conditioning in earlier iterations
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Adaptive Learning Rate via ADAM

Source: https://pytorch.org/docs/stable/optim.html

The default settings for the 
"betas" work usually just fine

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80=">AAACTHicbZBPaxRBEMV7NhqT9d9qjl6KLMIGzTITBYMQCHrx4CEBNwnsLENNb0+2TffM0F1jWJr5gLnkkJufwouHiAj27A6oiQUNj/equqt/aamkpTD8GnRW7txdvbe23r3/4OGjx70nT49sURkuRrxQhTlJ0QolczEiSUqclEagTpU4Ts/eN/nxF2GsLPJPNC/FRONpLjPJkbyV9LhOCN7uQYyqnCHEfFoQ6MTRdlTDC4BBtL 2MttoszgxyF5doSKKCWCPNOCr3sa7/uO48cfIlfK7rekBbSa8fDsNFwW0RtaLP2jpIelfxtOCVFjlxhdaOo7CkiWsu50rU3biyokR+hqdi7GWOWtiJW8Co4bl3ppAVxp+cYOH+PeFQWzvXqe9sdrc3s8b8XzauKNudOJmXFYmcLx/KKgVUQEMWptIITmruBXIj/a7AZ+hpkeff9RCim1++LY52htGr4c7h6/7+uxbHGnvGNtmARewN22cf2AEbMc4u2Dd2zX4El8H34Gfwa9naCdqZDfZPdVZ/A10DsoM=</latexit>

r := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

@wi,j(t)

◆2

<latexit sha1_base64="35mB82DfqUC86OS0JSfG/tTONkc="></latexit>

https://pytorch.org/docs/stable/optim.html
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https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87
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optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) 
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before, 

you can find an overview at: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html
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optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) 
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before, 

you can find an overview at: https://pytorch.org/docs/stable/optim.html

Remember to save the optimizer state if you are using, e.g., Momentum or  
ADAM, and want to continue training later  
(see earlier slides on saving states of the learning rate schedulers).

https://pytorch.org/docs/stable/optim.html
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Training Loss vs Generalization Error
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Improving Generalization Performance by Switching from Adam to SGD

2. SWATS
To investigate the generalization gap between Adam and
SGD, let us consider the training of the CIFAR-10 data
set (Krizhevsky & Hinton, 2009) on the DenseNet archi-
tecture (Iandola et al., 2014). This is an example of an
instance where a significant generalization gap exists be-
tween Adam and SGD. We plot the performance of Adam
and SGD on this task but also consider a variant of Adam
which we call Adam-Clip(p, q). Given (p, q) such that
p < q, the iterates for this variant take on the form

wk = wk�1�

clip

 p
1� �

k

2

1� �
k

1

↵k�1p
vk�1 + ✏

, p · ↵sgd, q · ↵sgd

!
mk�1.

Here, ↵sgd is the tuned value of the learning rate for SGD
that leads to the best performance for the same task. The
function clip(x, a, b) clips the vector x element-wise such
that the output is constrained to be in [a, b]. Note that
Adam-Clip(1, 1) would correspond to SGD. The network
is trained using Adam, SGD and two variants: Adam-
Clip(1,1), Adam-Clip(0, 1) with tuned learning rates for
200 epochs, reducing the learning rate by 10 after 150
epochs. The goal of this experiment is to investigate the
effect of constraining the large and small step sizes that

Adam implicitly learns, i.e.,
p

1��
k
2

1��
k
1

↵k�1p
vk�1+✏

, on the gen-
eralization performance of the network. We present the re-
sults in Figure 1.

As seen from Figure 1, SGD converges to the expected test-
ing error of ⇡ 5% while Adam stagnates in performance at
around ⇡ 7% error. We note that fine-tuning of the learning
rate schedule (primarily the initial value, reduction amount
and the timing) did not lead to better performance. Also,
note that the rapid initial progress of Adam relative to SGD.
This experiment is in agreement with the experimental ob-
servations of Wilson et al. (2017). Interestingly, Adam-
Clip(0, 1) has no tangible effect on the final generalization
performance while Adam-Clip(1,1) partially closes the
generalization gap by achieving a final accuracy of ⇡ 6%.
We observe similar results for several architectures, data
sets and modalities whenever a generalization gap exists
between SGD and Adam. This stands as evidence that the
step sizes learned by Adam could circumstantially be too
small for effective convergence. This observation regarding
the need to lower-bound the step sizes of Adam is similar
to the one made in Anonymous (2018), where the authors
devise a one-dimensional example in which infrequent but
large gradients are not emphasized sufficiently causing the
non-convergence of Adam.

Given the potential insufficiency of Adam, even when con-
straining one side of the accumulator, we consider switch-

ing to SGD once we have reaped the benefits of Adam’s

Figure 1. Training the DenseNet architecture on the CIFAR-10
data set with four optimizers: SGD, Adam, Adam-Clip(1,1) and
Adam-Clip(0, 1). SGD achieves the best testing accuracy while
training with Adam leads to a generalization gap of roughly 2%.
Setting a minimum learning rate for each parameter of Adam par-
tially closes the generalization gap.

rapid initial progress. This raises two questions: (a) when
to switch over from Adam to SGD, and (b) what learn-
ing rate to use for SGD after the switch. Assuming that
the learning rate of SGD after the switchover is tuned, we
found that switching too late does not yield generalization
improvements while switching too early may cause the hy-
brid optimizer to not benefit from Adam’s initial progress.
Indeed, as shown in Figure 2, switching after 10 epochs
leads to a learning curve very similar to that of SGD, while
switching after 80 epochs leads to inferior testing accuracy
of ⇡ 6.5%. To investigate the efficacy of a hybrid strat-
egy whilst ensuring no increase in the number of hyperpa-
rameters (a necessity for fair comparison with Adam), we
propose SWATS, a strategy that automates the process of
switching over by determining both the switchover point
and the learning rate of SGD after the switch.

2.1. Learning rate for SGD after the switch

Consider an iterate wk with a stochastic gradient gk and a
step computed by Adam, pk. For the sake of simplicity,
assume that pk 6= 0 and p

T

k
gk < 0. This is a common

requirement imposed on directions to derive convergence
(Nocedal & Wright, 2006). In the case when �1 = 0 for
Adam, i.e., no first-order exponential averaging is used, this

Keskar, N. S., & Socher, R. (2017). Improving 
generalization performance by switching from adam to 
sgd. arXiv preprint arXiv:1712.07628.

Published as a conference paper at ICLR 2015

(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate bvt
vanishes to zeros after a few epochs and is dominated by the ✏ in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.

7

Kingma, D. P., & Ba, J. (2014). Adam: A method 
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

Training Loss vs Generalization Error
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"An overview of gradient descent optimization algorithms" by Sebastian Ruder:  
http://ruder.io/optimizing-gradient-descent/index.html

http://ruder.io/optimizing-gradient-descent/index.html

