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Overview: Additional Tricks for
Neural Network Training

¥ Input Normalization (BatchNorm, InstanceNorm, GroupNorm,
LayerNorm)

¥ Weight Initialization (Xavier, Kaiming He)

¥ Optimization Algorithms (RMSProp, Adagrad, ADAM)
-- after Spring Break



Recap: Why We Normalize Inputs for Gradient Desc

W1

W1

. Surface of a convex cost functidn
minimum

N (for simplicity)
~

(Keep in mind that we are using)
the same learning rate for all weights, so large parameters
will dominate the updates)

>

W»o
"Standardization" of input features

(scaled feature will have
Zero mean, unit variance)




However, normalizing the inputs
only alects the brst hidden layen...
what about the other hidden layers?



Batch Normalization

lole, S., & Szegedy, C. (2015, June). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In
International Conference on Machine Learning (pp. 448-456).

http://proceedings.mir.press/v37/iolel5.html



Batch Normalization

¥ Normalization of inputs for hidden layers
¥ Helps with exploding/vanishing gradient problems
¥ Can increase training stability and convergence rate

¥ Can be understood as additional normalization layers (with
additional parameters)



Suppose, we have net inputgf)
associated with an activation in the 2nd hidden layer

Y1 Y2 ys
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Now, consider all examples in a minibatch such that the net input of a
given training examplé
at layer 2 Is written as Z(Z)[ ]

1

where | 1 {1,...,n}

In the next slides, let's omit the layer
Index, as it may be distracting...




BatchNorm Step 1: Normalize Net Inputs
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BatchNorm Step 1: Normalize Net Inputs
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For numerical stability, where epsilon
IS a small number like 1E-5
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BatchNorm Step 2: Pre-Activation Scaling
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These are learnable parameters
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BatchNorm Step 2: Pre-Activation Scaling

Controls the mean
Controls the spread or scale
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BatchNorm Step 2: Pre-Activation Scaling

Controls the mean
Controls the spread or scale

Technically, a BatchNorm layer could learn to perform
"standardization" with zero mean and unit variance
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BatchNorm Step 1 & 2 Summarized

[7] . .
J o J J J J
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‘ | Zg_l) - Zlgl) ’a! gl) > a(ll) brst hidden layer

‘—>‘ -‘ >‘ second hidden layer
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BatchNorm -- Additional Things to Consider

1] _ a1 1)

N\

This parameter makes the bias units redundant

Also, note that the batchnorm parameters are
vectors with the same number of elements as
the bias vector
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Backpropagation for BatchNorm
Parameters
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Reminder:

Multilayer Perceptron (from lecture 9)

e o
1 W11 y
(3)
W11 l _
L(y,0) =
(2)
W3, 1 ‘
(1) wherea:=!(2) = ! (W' x)
2 1 . . .
L 4 10 é! a(l) é! a(l) (Assume network for binary classibcation)
E (2) (1) (1)
I, o lay  ta}
+ —a a a
I (2) (1) (1)
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Let's consider a simpler case ...
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Same as on previous slide, but more verbose ...

y
(1) (2) (3) l _
W, W, W, L(y,0) = |
o @@ o

3
| ] T ] '] 1o ,!Z-()
. o é‘.O — 4 4 j
w® o 1y® " !Wj(g) 10 !Zj(g) !Wj(g)
- W) - Wi
1,10 ,'a”

= a a

> .
w® o ra® rw®

L 1], 1o ,!aj(z),!aj(l)
- a a a LI I ]
w o to g® g W T

J

19



(previously, we didn't write the
net input explicitly in the comp.

graph) 4
(1) 2 __ 3) j
Adding a

v

BatchNorm layer ...
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Backprop for BatchNorm Parameters
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Backprop Beyond the BatchNorm Layer

(3)

w w'® (3 Wi
‘ RPN O N , J
J

Since the minibatch mean and variance act as
parameters, we can/have to apply the
multivariable chain rule
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Backprop for BatchNorm Parameters
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If you like engineering math, you can solve the remaining terins
as an ungraded HW exercise ;)
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class MultilayerPerceptron (torch.nn.Module): BatChNOrm In PyTOrCh

def _init _ (self ,num_features, num_classes):
super (MultilayerPerceptron, self ). _init_ ()

### 1st hidden layer
self .linear_1 = torch.nn.Linear(num_features, num_hidden_1)
self .linear_1 bn =torch.nn.BatchNormld(num_hidden_1)

### 2nd hidden layer
self .linear_2 = torch.nn.Linear(num_hidden_1, num_hidden_2)
self .linear_2 bn = torch.nn.BatchNorml1ld(num_hidden_2)

### Output layer
self .linear_out = torch.nn.Linear(num_hidden_2, num_classes)

def forward (self ,Xx):
out = self .linear_1(x)
# note that batchnorm is in the classic
# sense placed before the activation
out = self .linear_1 bn(out)
out = F.relu(out)

out = self .linear_2(out)
out = self .linear_2_ bn(out)
out = F.relu(out)

logits = self .linear_out(out)

probas = F.softmax(logits, dim= 1)
return logits, probas
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class MultilayerPerceptron (torch.nn.Module): BatChNorm In PyTOrCh

def _init _ (self ,num_features, num_classes):
super (MultilayerPerceptron, self ). _init_ ()

### 1st hidden layer
self .linear_1 = torch.nn.Linear(num_features, num_hidden_1)
self .linear_1 bn =torch.nn.BatchNormld(num_hidden_1)

### 2nd hidden layer
self .linear_2 = torch.nn.Linear(num_hidden_1, num_hidden_2)
self .linear_2 bn = torch.nn.BatchNorml1ld(num_hidden_2)

### Output layer
self .linear_out = torch.nn.Linear(num_hidden_2, num_classes)

def forward (self ,Xx):
out = self .linear_1(x)
# note that batchnorm is in the classic
# sense placed before the activation
out = self .linear_1 bn(out)
out = F.relu(out)

don't forget model.train() !
out = self .linear_2(out)
out = self .linear_2_bn(out) and mOdel.eval() '
out = F.relu(out) . ..
In training and test loops

logits = self .linear_out(out)
probas = F.softmax(logits, dim= 1)
return logits, probas
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BatchNorm During Prediction ("Inference")

¥ Use exponentially weighted average (moving average) of mean
and variance

running_mean = momentum * running_mean !
+ (1 - momentum) * sample_mean !

(where momentum is typically ~0.1; and same for variance)

¥ Alternatively, can also use global training set mean and varianc
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BatchNorm and Internal Covariate Shift

lole, S., & Szegedy, C. (2015, June). Batch Normalization: Accelerating
Deep Network Trainingby Reducing Internal Covariate Shiftn
International Conference on Machine Learning (pp. 448-456).

http://proceedings.mir.press/v37/iolel5.html

Internal Covariate Shift is jargon for saying that the layer input
distribution changes ("feature shift" in hidden layers )

But there Is actually no guarantee or evidence
that BatchNorm helps with covariate shift

In my opinion, BatchNorm just provides additional parameters
that will help layers to learn a little bit more independently

27



at. MLL] 6 Mar 2019

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras™ Andrew Ilyas™ Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.
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BatchNorm Enables Faster Convergende By
Allowing Larger Learning Rates

100 100 Standard Standard + BatchNorm
(LR=0.1) (LR=0.1)
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Figure 1: Comparison of (a) training (optimization) and (b) test (generalization) performance
standard VGG network trained on CIFAR-10 with and without BatchNorm (details in Appendix .
There is a consistent gain in training speed in models with BatchNorm layers. (c) Even thougt
gap between the performance of the BatchNorm and non-BatchNorm networks is clear, the differ
In the evolution of layer input distributions seems to be much less pronounced. (Here, we san
activations of a given layer and visualized their distribution over training steps.)

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help optimization?.
In Advances in Neural Information Processing Systems (pp. 2488-2498).
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Good Performance of BatchNorm Seems Unrelatec
Covarlate Shift Prevention

Standard Standard + Standard +

BatchNorm "Noisy" BatchNorm
100

(0]
o
Layer #2

(o)}
o
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o
Layer #9

Training Accuracy

—— Standard
—— Standard + BatchNorm
—— Standard + "Noisy" Batchnorm

N
o

Layer #13

0 5k 10k 15k

Steps

Figure 2: Connections between distributional stability and BatchNorm performance: We compare
VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard + BatchNorm)
and with explicit Ocovariate shiftO added to BatchNorm layers (Standard + ONoisyO BatchNorm).
In the later case, we induce distributional instability by addintge-varying non-zeromean and
non-unitvariance noise independently to each batch normalized activation. The OnoisyO BatchNorm
model nearly matches the performance of standard BatchNorm model, despite complete distributional
instability. We sampled activations of a given layer and visualized their distributions (also cf. Figure 7).

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help optimization?.
In Advances in Neural Information Processing Systems (pp. 2488-2498).
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BatchNorm Variants

Pre-Activation

"Original" version
as discussed In
previous slides

compute net inputs

l

BatchNorm

l

apply activation function

l

compute next-layer net inputs

Post-Activation

May make more sense,
but less common

compute net inputs

l

apply activation function

l

BatchNorm

l

compute next-layer net inputs
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Some Benchmarks

https://github.com/ducha-aiki/calenet-benchmark/blob/master/batchnorm.md#bn----before-or-
after-relu

BN -- before or after ReLU?

Name Accuracy LoglLoss Comments
Before 0.474 2.35 Asin paper
Before + scale&bias layer 0.478 2.33 Asin paper
After 0.499 2.21
After + scale&bias layer 0.493 2.24
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Some Benchmarks

https://github.com/ducha-aiki/calenet-benchmark/blob/master/batchnorm.md#bn----before-or-
after-relu

BN and activations

Name Accuracy LoglLoss Comments

RelLU 0.499 2.21
RRelLU 0.500 2.20
PRelLU 0.503 2.19
ELU 0.498 2.23
Maxout 0.487 2.28
Sigmoid 0.475 2.35
TanH 0.448 2.50
No 0.384 2.96
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Some Benchmarks

https://github.com/ducha-aiki/calenet-benchmark/blob/master/batchnorm.md#bn----before-or-
after-relu

BN and dropout

RelLU non-linearity, fc6 and fc7 layer only

Name Accuracy LoglLoss Comments
Dropout = 0.5 0.499 2.21
Dropout = 0.2 0.527 2.09
Dropout =0 0.513 2.19

Sebastian Raschka STAT 479: Deep Learning SS 2019 34


https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu

Practical Consideration

BatchNorm become more stable with larger minibatch size

34| o N Figure 1. ImageNet classibcation error vs. batch
sizes. The model is ResNet-50 trained in the Ima-
geNet training set using 8 workers (GPUs) and evalu-
ated in the validation set. BN’s error increases rapidly
when reducing the batch size. GN’s computation is in-
dependent of batch sizes, and its error rate is stable
0o ‘ ‘ ‘ ‘ despite the batch size changes. GN has substantially
% atoh sive (imaZes oer V:orker) ° lower error (by 10%) than BN with a batch size of 2.

244

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).
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Other Normalization Methods for Hidden Activation

Batch Norn Layer Norn Instance Nort Group Norm

H W
H W

VAV
AAVAVAVAY
(AAVAAVAY

AVAVAVAWAY

Z\ AN\ NN

Figure 2. Normalization methods . Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).

(will revisit after Spring Break after introducing Convolutional Neural Netw
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Why Minibatch Sizes as Powers of 27?

¥ Related to SIMD - Single Instruction Multiple Data - paradigm used by CPUs/
GPUs

¥ Comes from mapping the computations (e.g., dot products) to physical
processing cores on the GPU, where the number of processing cores is usually a
power of 2

_ _ _ SIMD Instruction Pool
¥ E.g., If we have 48 columns in a matrix, we can map 3

dot products to each processing core if we have 16
processing cores (GPUs usually have many, many more
processing cores)

Data Pool

=
=
>
—
@)
)
g
>

(It mlght be one of the archaic DL conventions/ Source: https://upload.wikimedia.org/wikipedia/

traditions, and | don't think this matters much commons/thumbl/c/ce/SIMD2.svg/440px-
SIMD2.svg.png

anymore for modern frameworks)
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Reading Assignments (Optional)

lole, S., & Szegedy, C. (2015, June). Batch Normalization: Accelerating Deep Network Training by Reducing Intern
Covariate Shift. InInternational Conference on Machine Learning (pp. 448-456).

http://proceedings.mir.press/v37/iolel5.html
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Weight Initialization

¥ We previously discussed that we want to initialize weight to small,
random numbers to break symmetry

¥ Also, we want the weights to be relatively, why?

Tip (from an earlier slide):

Surface of a convex cost function

mingnum (for simplicity)
T = N
( i
w1 \<j:€\]z§§§ﬂ'— — -——-"‘2___./
. (K—p ;;in—dih—t- g
the same learning rate for all weights, so large parameters
will dominate the updates)
w2
e —— "Standardization" of input features
—_— ; .01 — I
N e
CLC)Y) ) %
w1 Lo )
\ )')\(—// / (scaled feature will have
o / zero mean, unit variance)
w2
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Sidenote: Vanishing/Exploding Gradient problem:

/ Now, imagine, we have many layers and

( , ’ . sigmoid activations ...
! _'Ié!o é!a(l)a!a(l)
v 2 |7y 4@ (1)

11, 1o ,tay 1al!

+-— 4 a a
o 1a? 1al? 1wl
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Sidenote: Vanishing/Exploding Gradient problem:

/ Now, imagine, we have many layers and

, . logistic sigmoid activations ...
_ o é!a(l) 1 al!
(1) @ [7) 4O (1)

1, to é!a(zz) é!a(ll)
o 1a? 1al? 1wt

o' (2" =o(Z'") a1 o(z'"))
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Sidenote: Vanishing/Exploding Gradient problem:

()= — L= S _—1@ar @)
1+ éz dz’ 1+ €22

1.0 0.25 J
0.8 A 0.20 A
_ 0.6 A % 0.15 +
0.4 - S 0.10 -
0.2 0.05 -
0.0 A 0.00 A

8 -6 -4 -2 0 2 4 6 8 8 -6 -4 -2 0 2 4 6 8
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Sidenote: Vanishing/Exploding Gradient problem:

Assume, we have the largest gradient:

%! (0.0) = 1(0.0)(1! 1(0.0)) =0.25

Even then, for, e.qg., 10 layers, we degrade the other gradidnts
substantially!

025101 10 °©
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Sidenote: Vanishing/Exploding Gradient problem:

How, do you think, does RelLU behave?
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Weight Initialization

¥ Traditionally, we can initialize weights by sampling from a random
uniform distribution in range [0, 1], or better, [-0.5, 0.5]

¥ Or, we could sample from a Gaussian distribution with meat O
and small variance (e.g., 0.1 or 0.01)

¥ When would you choose which?

.. Surface of a convex cost function
minimum

Tip (from an earlier slide): N ~ (forsimplicit)
C Nl mas—— >
wy -
© (Keep in mind that g
the same learning rate for all weights, so large parameters
will dominate the updates)
w2
— "Standardization" of input features
//-_— \ iz —
[/ 7~ \ i = .
C((C)) )] %
w | ". | /) [
1 \ )<<—// ) (scaled feature will have
%// zero mean, unit variance)
w2
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Weight Initialization

¥ Traditionally, we can initialize weights by sampling from a random
uniform distribution in range [0, 1], or better, [-0.5, 0.5]

¥ Or, we could sample from a Gaussian distribution with meat O
and small variance (e.g., 0.1 or 0.01)

¥ When would you choose which?

Surface of a convex cost function

Tip (from an earlier slide): | M (ersimpleiy)
w| (=== 5
I (K'ep in—mn—d?h-t_we ing‘
il it he o)
w2
Sidenote: You can Initialize the /-j—j;\ o it o
: : - O .
bias units to all zeros //[/\\\ | =T,
w1 'n. \&( //// / (es<;3|e<i afeaturfet w;II_:aZ:)
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Custom Weight Initialization in PyTorch

class MLRtorch.nn.Module):

def _ init_ (self ,num_features, num_hidden, num_classes):
super (MLP, self ). init_ ()

self .num_classes = num_classes

### 1st hidden layer

self .linear_1 = torch.nn.Linear(num_features, num_hidden)
self .linear l.weight.detach().normal_( 0.0, 0.1)
self .linear_1l.bias.detach().zero ()

### Output layer

self .linear_out = torch.nn.Linear(num_hidden, num_classes)
self .linear_out.weight.detach().normal_( 0.0, 0.1)
self .linear out.bias.detach().zero ()

def forward (self ,Xx):

out = self .linear_1(x)
out = torch.sigmoid(out)
logits = self .linear_out(out)

probas = torch.sigmoid(logits)
return logits, probas
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Custom Weight Initialization in PyTorch

class MLRtorch.nn.Module):

def _ init_ (self ,num_features, num_hidden, num_classes):
super (MLP, self ). init_ ()

self .num_classes = num_classes

### 1st hidden layer

self .linear_1 = torch.nn.Linear(num_features, num_hidden)
self .linear l.weight.detach().normal_( 0.0, 0.1)
self .linear_1l.bias.detach().zero ()

### Output layer

self .linear_out = torch.nn.Linear(num_hidden, num_classes)
self .linear_out.weight.detach().normal_( 0.0, 0.1)
self .linear out.bias.detach().zero ()

def forward (self ,Xx):

out = self .linear_1(x)
out = torch.sigmoid(out)
logits = self .linear_out(out)

probas = torch.sigmoid(logits)
return logits, probas
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

¥ TanH Is a bit more robust regarding vanishing gradients (compared
to logistic sigmoid)

¥ It still has the problem of saturation (near zero gradients if inputs
are very large, positive or negative values)

¥ Xavier Initialization is a small improvement for initializing weights
for tanH
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Method:

!
Step 1 Initialize weights from Gaussian or uniform distribution with (previous slide)

Step 2 Scale the weights proportional to the number of inputs to the layér

(For the brst hidden layer, that is the number of features in the dataset;
for the second hidden layer, that is the number of units in the 1st hidden layer

etc.)
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Method:

Scale the weights proportional to the number of inputs to the layer

In particular, scale as follows:

1 wherem is the number of
w .— w3 input units to the next
m(l_l) layer

AN
wi; U1 N(u=0,!2=0.01)

(or uniform distr. in a bxed interval, as in the original paper)
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Sidenote: If you didn't initialize the bias units to all zeros, also include those
In the scaling.

1
WO .— w3
eg\

wi; U1 N(u=0,!2=0.01)

(or uniform distr. in a bxed interval, as in the original paper)
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Rationale behind this scaling:
Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of

Independent variables Is the sum of the variances); square root for standard
deviation

1

() .— W 3
WY = W'/ a "y

e\
wi; U1 N(u=0,!2=0.01)

(or uniform distr. in a bxed interval, as in the original paper)

Sebastian Raschka STAT 479: Deep Learning SS 2019 o3



Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Rationale behind this scaling:
Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of

Independent variables Is the sum of the variances); square root for standard
deviation

| ) ! "’ | " - 11
var a 1 var z® =var Z" =var 3 W(l) (l' 1)

]
1=1
m (=1 m (=1

Z Var W)l ™| = 3™ Var || Var [af 7]
1=1

m(1=1)
= Z Var [W(l)} Var [a(l_l)] = m~Y Var [W(l)] Var {a(l_l)}
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Xavier Initialization in PyTorch

Semi-Automatic:

self .linear =torch.nn.Linear(...)
torch.nn.init.xavier_uniform_(convl.weight)

More conveniently for all weights in e.q., fully-connected layers:

def weights_init (m):
If isinstance  (m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
torch.nn.init.xavier_uniform_(m.bias)

model.apply(weights_init)
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Weight Initialization -- Xavier Initialization

1
w .— w .

/

Again, some DL jargon: This is sometimes called "fan in"
(= number of inputs to a layer)
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Weight Initialization -- Xavier Initialization

1
0 .— w
wh .= W \/m[l_”

From the original paper: However, in practice, some people also

111 - 111 + 11} n -
We initialized the biases to be 0 and the weigiits at use "fan in fan out” in the denominator,

each layer with the foIIov|ving commonly used heuristic: and it works Pne
Wi $ u " géﬁ,%l% , (1)

whereU[" a, @] is the uniform distribution in the interval
(" a,a) andn is the size of the previous layer (the number
of columns ofW).

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks.
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.
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Weight Initialization -- Xavier Initialization

However, in practice, some people also

1
W(l) — W(l) : \/ ] use "fan in" + "fan out" in the denominator,
mll—

and 1t works bpne

From the original paper: Also from the original paper:

" The normalization factor may therefore be important when

initializing deep networks because of the multiplicative ef-

l fect through layers, and we suggest the following initializa-

W sy " é g&_ | (1) tlon prqgedure _to gpprom_mately satisfy our objectives of
n n maintaining activation variances and back-propagated gra-

hereUT" s th . distribution in the i | dients variance as one moves up or down the network. We
whereU[" a, a] is the uniform distribution in the interva call it the normalized initialization -

(" a,a) andn is the size of the previous layer (the number & _ & _

of columns ofw). W$ U [%& 0 & 0 (16)

We initialized the biases to be 0 and the weigiits at
each layer with the following commonly used heuristic:

oL
Nj +Nj+1 Nj +Nj+1

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks.'
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.
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Weight Initialization -- Xavier Initialization

There are many variants used in dilerent frameworks:

TensorFlow > APIr1.13 > Python

tf.glorot_uniform_initializer

Class glorot_uniform_initializer

Inherits From: VarianceScaling

Aliases:

e (Class tf.glorot_uniform_initializer
e Class tf.initializers.glorot_uniform

e Class tf.keras.initializers.glorot_uniform
Defined in tensorflow/python/ops/init_ops.py .
The Glorot uniform initializer, also called Xavier uniform initializer.

It draws samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in +
fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of
output units in the weight tensor.

Source: https://www.tensorf3ow.org/api_docs/python/tf/glorot_uniform_initializer
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

[>Layer 1

Layer 2
X Layer 3|
+ Layer 4

i i i

0 ! f ) i
-1 . . . -0.2 0 0.2
Activation Value
100 | i | 1 | ; !
—Layer 1
Layer 2 ] ]
/e —1Layer3| | EXploding gradient problem
S T | S S e — ........................... L S AR S _Layer4 -
i Layer 5
¢ m | : _
o IO A, Wi~ S
0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients
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Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

100 i T ;
: —Layer 1
: g Layer 2
/€ —Layer 3
S 50_ ....... ....................................................... ............................................................. _Layer 4 o]
: i } Layer 5
NI N B oo . S S R
iy 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
10 | 5 : '
T e
Y ""'I ' Layer 2
: “l z w" "
3 “‘ lll ‘ 1.‘.|1-| | —Layer 3
L ............. J vL‘”H ........ : m.’l!'}l,» ....... ..................................... _Layer 4
”Vl"i Tif qﬂi\ ‘,‘ Layer 5
: cﬁ,ﬂfh " ‘1"‘-‘.5.'1} Q |
0 o ey Awtﬂl i i | i ; t"““*ﬂ-ﬁmm L
-025 -02 -0.15 -01 -005 O 005 0.1 015 02 0.25
2 Backpropagated gradients

if=igure 7. Back-propagated gradients normalized |
tograms with hyperbolic tangent activation, with stand
(top) vs normalized (bottom) initialization. Top: O-pe
decreases for higher layers.

' - - ==
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Weight Initialization -- He Initialization

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification." In Proceedings of the IEEE international conference on computer vision, pp.
1026-1034. 2015.

¥ Assuming activations with mean 0, which is reasonable, Xavier Initialization assumes
a derivative of 1 for the activation function (which is reasonable for tanH)

¥ For ReLU, this is dilerent, as the activations are not centered at zero anymore

¥ He initialization takes this into account (to see that worked out in math, see the
paper)

¥ The result is that we add a scaling factor of 25

2

() .— (1) 4
WY’ = WY a TR
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Weight Initialization -- He Initialization

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification." In Proceedings of the IEEE international conference on computer vision, pp.
1026-1034. 2015.

¥ Assuming activations with mean 0, which is reasonable, Xavier Initialization assumes
a derivative of 1 for the activation function (which is reasonable for tanH)

¥ For ReLU, this is dilerent, as the activations are not centered at zero anymore

¥ He initialization takes this into account (to see that worked out in math, see the
paper)

¥ The result is that we add a scaling factor of 25

For Leaky RelLU with negative slope alpha:

' 2
OERYYIO w® .— wO .
W= W5 a ml! 1] (1 + @2) . mll—1]
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PyTorch Default Weights

PyTorch uses the following scheme by default, which is

somewhat similar to Xavier initialization, and works ok
In practice most of the time

O github.com 45

pytorch/pytorch/blob/9e2f2cab94027c1be1860b9b5e98ac13c6b0516e/torch/nn/
modules/linear.py#L.48-L52

def reset_parameters(self):

stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias 1is not None:

self.bias.data.uniform_(-stdv, stdv)
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Note that if BatchNorm Is uséed,
Initial feature weight choice Is less important anywze
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