
Sebastian Raschka STAT 479: Deep Learning SS 2019 1

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 13

Introduction to  
Convolutional Neural Networks

Part 3

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Sebastian Raschka STAT 479: Deep Learning SS 2019 2

Face Recognition and Metric Learning

Sebastian Raschka STAT 479: Deep Learning SS 2019 3

Siamese Networks

Similarity/
Distance  

Score

d
⇣
x[1], x[2]

⌘
=

����

����f
⇣
x[1]

⌘
� f

⇣
x[1]

⌘ ����

����
2

2
<latexit sha1_base64="PvXxWKUnB8aqNprNkY8WJYBBfyM=">AAACVnicbVFdS8MwFE2r0zm/qj76EhzCBB3tFPRFEH3xcYJTYe1GmqVdMP0guRVH7Z/UF/0pvojZ1gfnduGSw7nncJMTPxVcgW1/GebScmVltbpWW9/Y3Nq2dnYfVJJJyjo0EYl88oligsesAxwEe0olI5Ev2KP/fDOeP74wqXgS38MoZV5EwpgHnBLQVN+KBq5gATRee3nX8YpjPAYtr3AlD4dwdOn6PAzfcHkEM+JSc7KQnTH281bR09236nbTnhSeB04J6qisdt96dwcJzSIWAxVEqa5jp+DlRAKnghU1N1MsJfSZhKyrYUwiprx8EkuBDzUzwEEidceAJ+xfR04ipUaRr5URgaH6PxuTi2bdDIILL+dxmgGL6XRRkAkMCR5njAdcMgpipAGhkuu7YjokklDQP1HTITj/nzwPHlpN57TZujurX12XcVTRPjpADeSgc3SFblEbdRBFH+jbMI0l49P4MSvm6lRqGqVnD82Uaf0Clqy0ZA==</latexit>

Typically

d
⇣
x[1], x[2]

⌘
=

����f
⇣
x[1]

⌘
� f

⇣
x[1]

⌘ ����
1

<latexit sha1_base64="ItIk0WiniriqNAs3tuhV0oKxPCg=">AAACRnicbVBJSwMxGP2m7nWrevQSLIKClpkq6EUQvXhUsCp0xpJJM9PQzELyjVjG+XVePHvzJ3jxoIhX0zoHtweBx1tI8vxUCo22/WRVxsYnJqemZ6qzc/MLi7Wl5QudZIrxFktkoq58qrkUMW+hQMmvUsVp5Et+6fePh/7lDVdaJPE5DlLuRTSMRSAYRSN1al7XlTzAjdvrvO14xRYZkqZXuEqEPdw8cH0RhneEBD9ipbv9r1pWOrlTdGp1u2GPQP4SpyR1KHHaqT263YRlEY+RSap127FT9HKqUDDJi6qbaZ5S1qchbxsa04hrLx/NUJB1o3RJkChzYiQj9Xsjp5HWg8g3yYhiT//2huJ/XjvDYN/LRZxmyGP2dVGQSYIJGW5KukJxhnJgCGVKmLcS1qOKMjTLV80Izu8v/yUXzYaz02ie7dYPj8o5pmEV1mADHNiDQziBU2gBg3t4hld4sx6sF+vd+viKVqyyswI/UIFPuQKxVQ==</latexit>

or

x[1]
<latexit sha1_base64="p8Wx+cqqkWj+1zNtDaf7R0Gpalg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122y7dbMLuRCyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXJtRKzucZzwIKIDJfqCUbRS6+kh871g0i2V3Yo7A1kmXk7KkKPeLX11ejFLI66QSWqM77kJBhnVKJjkk2InNTyhbEQH3LdU0YibIJudOyGnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpr+TntCcoRxbQpkW9lbChlRThjahog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAwgmd4hTcncV6cd+dj3rri5DNH8AfO5w81Jo97</latexit>

x[2]
<latexit sha1_base64="vzgd/QPklE2GpKgvXahAxpOTUdw=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122i7dbMLuRiyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLE8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1Q6pRcIkNw43AdqKQRqHAVji6mfqtR1Sax/LejBMMIjqQvM8ZNVZqPT1kfjWYdEtlt+LOQJaJl5My5Kh3S1+dXszSCKVhgmrte25igowqw5nASbGTakwoG9EB+pZKGqEOstm5E3JqlR7px8qWNGSm/p7IaKT1OAptZ0TNUC96U/E/z09N/yrIuExSg5LNF/VTQUxMpr+THlfIjBhbQpni9lbChlRRZmxCRRuCt/jyMmlWK955pXp3Ua5d53EU4BhO4Aw8uIQa3EIdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx82rI98</latexit>

Sebastian Raschka STAT 479: Deep Learning SS 2019 4

Siamese Networks

Often used for "One-shot learning"

• Suppose you trained a Siamese network for verification tasks

• Now, suppose you have only ~1 object per class

• You can compare any new object to any object based on 
maximum similarity to your given images  
(somewhat related to K-nearest neighbors)

Sebastian Raschka STAT 479: Deep Learning SS 2019 5

A. Identification
Determine identity of an unknown person
1-to-n matching

...

B. Verification
Verify claimed identity of a person
1-to-1 matching

(CelebA dataset) (MUCT dataset)

Face Recognition: 
Face Identification vs Face Verification

dataset link: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html dataset link: http://www.milbo.org/muct/

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://www.milbo.org/muct/

Sebastian Raschka STAT 479: Deep Learning SS 2019 6

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

P
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = � log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl�. In our case, the representation is:
G(I) = gF7

� (gL6
� (...gC1

� (T (I, ✓T))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓T = {x2d, ~P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ✏) 3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

DeepFace

Hybrid between traditional methods and deep learning

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 7

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

P
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = � log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl�. In our case, the representation is:
G(I) = gF7

� (gL6
� (...gC1

� (T (I, ✓T))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓T = {x2d, ~P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ✏) 3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

DeepFace

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

P
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = � log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl�. In our case, the representation is:
G(I) = gF7

� (gL6
� (...gC1

� (T (I, ✓T))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓T = {x2d, ~P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ✏) 3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

normalized
feature vectors

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 8

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

P
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = � log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl�. In our case, the representation is:
G(I) = gF7

� (gL6
� (...gC1

� (T (I, ✓T))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓T = {x2d, ~P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ✏) 3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

DeepFace - Face Recognition

Regular softmax ouput layer for classifying faces (face IDs)
optimized via cross-entropy loss.

Note they have 1-4k classes (they achieved a classification
accuracy of ~93%).

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 9

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701-1708. 2014.

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

very few parameters. These layers merely expand the input
into a set of simple local features.

The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
assumption of convolution cannot hold. For example, ar-
eas between the eyes and the eyebrows exhibit very differ-
ent appearance and have much higher discrimination ability
compared to areas between the nose and the mouth. In other
words, we customize the architecture of the DNN by lever-
aging the fact that our input images are aligned. The use
of local layers does not affect the computational burden of
feature extraction, but does affect the number of parameters
subject to training. Only because we have a large labeled
dataset, we can afford three large locally connected layers.
The use of locally connected layers (without weight shar-
ing) can also be justified by the fact that each output unit of
a locally connected layer is affected by a very large patch of
the input. For instance, the output of L6 is influenced by a
74x74x3 patch at the input, and there is hardly any statisti-
cal sharing between such large patches in aligned faces.

Finally, the top two layers (F7 and F8) are fully con-
nected: each output unit is connected to all inputs. These
layers are able to capture correlations between features cap-
tured in distant parts of the face images, e.g., position and
shape of eyes and position and shape of mouth. The output
of the first fully connected layer (F7) in the network will be
used as our raw face representation feature vector through-
out this paper. In terms of representation, this is in con-
trast to the existing LBP-based representations proposed in
the literature, that normally pool very local descriptors (by
computing histograms) and use this as input to a classifier.

The output of the last fully-connected layer is fed to a
K-way softmax (where K is the number of classes) which
produces a distribution over the class labels. If we denote
by ok the k-th output of the network on a given input, the
probability assigned to the k-th class is the output of the
softmax function: pk = exp(ok)/

P
h exp(oh).

The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = � log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
by updating the parameters using stochastic gradient de-
scent (SGD). The gradients are computed by standard back-
propagation of the error [25, 21]. One interesting property
of the features produced by this network is that they are very
sparse. On average, 75% of the feature components in the
topmost layers are exactly zero. This is mainly due to the
use of the ReLU [10] activation function: max(0, x). This
soft-thresholding non-linearity is applied after every con-
volution, locally connected and fully connected layer (ex-
cept the last one), making the whole cascade produce highly
non-linear and sparse features. Sparsity is also encouraged
by the use of a regularization method called dropout [19]
which sets random feature components to 0 during training.
We have applied dropout only to the first fully-connected
layer. Due to the large training set, we did not observe sig-
nificant overfitting during training2.

Given an image I , the representation G(I) is then com-
puted using the described feed-forward network. Any feed-
forward neural network with L layers, can be seen as a com-
position of functions gl�. In our case, the representation is:
G(I) = gF7

� (gL6
� (...gC1

� (T (I, ✓T))...)) with the net’s pa-
rameters � = {C1, ..., F7} and ✓T = {x2d, ~P ,~r} as de-
scribed in Section 2.

Normaliaztion As a final stage we normalize the fea-
tures to be between zero and one in order to reduce the sen-
sitivity to illumination changes: Each component of the fea-
ture vector is divided by its largest value across the training
set. This is then followed by L2-normalization: f(I) :=
Ḡ(I)/||Ḡ(I)||2 where Ḡ(I)i = G(I)i/max(Gi, ✏) 3.
Since we employ ReLU activations, our system is not in-
variant to re-scaling of the image intensities. Without bi-

2See the supplementary material for more details.
3✏ = 0.05 in order to avoid division by a small number.

DeepFace - Face Verification

Weighted chi-square distance + SVM classifier for binary
classification (predict whether two images depict the same person)

(They achieved a classification accuracy is ~97%.)

�2 (f1, f2) =
X

i

wi (f1|i]� f2[i])
2/ (f1[i] + f2[i])

<latexit sha1_base64="IXoex7omNN3u1tHZ5ubOksGfUXQ=">AAACXnicbVFbS8MwGE3rbc7Lpr4IvgSHMFFnOwV9EURffFRwKqy1pFm6haUXkq/KqP2Tvokv/hTTrcKcfpDkcM75cjnxE8EVWNaHYc7NLywuVZarK6tr67X6xuaDilNJWYfGIpZPPlFM8Ih1gINgT4lkJPQFe/SH14X++MKk4nF0D6OEuSHpRzzglICmvHrq0AF/ztq5I1gAzcDL7PwQ60UzkvcHsH/hqDT0Mp7j12Ke8uE3zCcm92jc0eUu3i82w8dTNs0e/Mjlnl69YbWsceG/wC5BA5V169XfnV5M05BFQAVRqmtbCbgZkcCpYHnVSRVLCB2SPutqGJGQKTcbx5PjPc30cBBLPSLAY3a6IyOhUqPQ186QwEDNagX5n9ZNITh3Mx4lKbCITg4KUoEhxkXWuMcloyBGGhAqub4rpgMiCQX9I1Udgj375L/god2yT1rtu9PG5VUZRwXtoF3URDY6Q5foBt2iDqLo0zCMqrFifJmL5ppZm1hNo+zZQr/K3P4GKFy08g==</latexit>

The weight is learned by the SVM.
You may know this from other stats classes for comparing discrete probability distributions (histograms)

https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 10

HW Clarification 1

kernel size > feature map issue

Sebastian Raschka STAT 479: Deep Learning SS 2019 11

HW Clarification 2
ReLU -- MaxPool Order

Sebastian Raschka STAT 479: Deep Learning SS 2019 12

HW Clarification 3

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/cnn-with-diff-init/default.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/cnn-with-diff-init/default.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 13

HW Clarification 3

From PyTorch Lecture (Lecture 6):

Sebastian Raschka STAT 479: Deep Learning SS 2019 14

HW Clarification 4

Sebastian Raschka STAT 479: Deep Learning SS 2019 15

HW Clarification 5

Sebastian Raschka STAT 479: Deep Learning SS 2019 16

FaceNet - Face Verification
Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and
clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015.

...

Batch

DEEP ARCHITECTURE L2 Triplet
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Figure 3. The Triplet Loss minimizes the distance between an an-

chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives, as
used in [14] Eq. (2), we believe that the triplet loss is more
suitable for face verification. The motivation is that the loss
from [14] encourages all faces of one identity to be âĂŸpro-
jectedâĂŹ onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss
The embedding is represented by f(x) 2 Rd. It em-

beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. kf(x)k2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xa

i (anchor) of
a specific person is closer to all other images xp

i (positive)
of the same person than it is to any image xn

i (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

kxa
i � xp

i k
2
2 + ↵ < kxa

i � xn
i k22, 8 (xa

i , x
p
i , x

n
i) 2 T . (1)

where ↵ is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

NX

i

h
kf(xa

i)� f(xp
i)k

2
2 � kf(xa

i)� f(xn
i)k

2
2 + ↵

i

+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection
In order to ensure fast convergence it is crucial to select

triplets that violate the triplet constraint in Eq. (1). This
means that, given xa

i , we want to select an xp
i (hard pos-

itive) such that argmaxxp
i
kf(xa

i)� f(xp
i)k

2
2 and similarly

xn
i (hard negative) such that argminxn

i
kf(xa

i)� f(xn
i)k

2
2.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 17

FaceNet - Face Verification
Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and
clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015.

...

Batch

DEEP ARCHITECTURE L2 Triplet
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

Figure 3. The Triplet Loss minimizes the distance between an an-

chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives, as
used in [14] Eq. (2), we believe that the triplet loss is more
suitable for face verification. The motivation is that the loss
from [14] encourages all faces of one identity to be âĂŸpro-
jectedâĂŹ onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss
The embedding is represented by f(x) 2 Rd. It em-

beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. kf(x)k2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xa

i (anchor) of
a specific person is closer to all other images xp

i (positive)
of the same person than it is to any image xn

i (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

kxa
i � xp

i k
2
2 + ↵ < kxa

i � xn
i k22, 8 (xa

i , x
p
i , x

n
i) 2 T . (1)

where ↵ is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

NX

i

h
kf(xa

i)� f(xp
i)k

2
2 � kf(xa

i)� f(xn
i)k

2
2 + ↵

i

+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection
In order to ensure fast convergence it is crucial to select

triplets that violate the triplet constraint in Eq. (1). This
means that, given xa

i , we want to select an xp
i (hard pos-

itive) such that argmaxxp
i
kf(xa

i)� f(xp
i)k

2
2 and similarly

xn
i (hard negative) such that argminxn

i
kf(xa

i)� f(xn
i)k

2
2.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 18

Triplet Loss

Anchor Positive Anchor Negative

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

Sebastian Raschka STAT 479: Deep Learning SS 2019 19

Triplet Loss

Anchor Positive Anchor Negative

d(A,P) d(A,N)

kf(A)� f(P)k22 kf(A)� f(N)k22
<latexit sha1_base64="iSgkT2c7cjhzIV3yZho+oNUd9AQ=">AAACUXicbVHLThsxFL0ZSqGhlFCWbKxGrRIJopmARJc8NqxQkAggxWnk8dxJLDyewfYgRUN+kQWs+I9uumhVJxkhXke60vE59/pxHGZSGOv7jxVv4cPix6XlT9WVz6tf1mrrX89NmmuOXZ7KVF+GzKAUCrtWWImXmUaWhBIvwqujqX9xg9qIVJ3ZcYb9hA2ViAVn1kmD2oiGOBSqYFIMFUYTEjUOtkinSX4QKvF6vjxpEkrpbdw4aG7HjU6T3g6K9uSXq7LtyTt57lFU0dPGg1rdb/kzkLckKEkdSnQGtXsapTxPUFkumTG9wM9sv2DaCi5xUqW5wYzxKzbEnqOKJWj6xSyRCfnulIjEqXalLJmpzycKlhgzTkLXmTA7Mq+9qfie18tt/LNfCJXlFhWfHxTnktiUTOMlkdDIrRw7wrgW7q6Ej5hm3LpPqLoQgtdPfkvO261gp9U+3a3vH5ZxLMMmfIMGBLAH+3AMHegChzv4DX/hX+Wh8scDz5u3epVyZgNewFv5Dzpjr4g=</latexit>

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

Sebastian Raschka STAT 479: Deep Learning SS 2019 20

Triplet Loss

Anchor Positive Anchor Negative

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

d(A,P) + ↵ d(A,N)

kf(A)� f(P)k22 + ↵ kf(A)� f(N)k22
<latexit sha1_base64="i5Xi5NRRr69NBA0Y41EScJCtrkc=">AAACX3icbVFdSxtBFJ3d1qrR2m19kr4MDUpCa9hNBX3048UnidCokInh7uzdZHB2djszK4Q1f9I3oS/9J04+EL8uXDiccy73zpm4kMLYMHzw/A8flz4tr6zW1tY/b3wJvn67MHmpOXZ5LnN9FYNBKRR2rbASrwqNkMUSL+Obk6l+eYvaiFz9seMC+xkMlUgFB+uoQXDLYhwKVYEUQ4XJhCaNo1+00/zJQBYjoDuUSfw7Z8+alDF2lzaOmrtpo9Nkd4OqPbl2/dL9ZDl7ZqEMVfK0ZhDUw1Y4K/oWRAtQJ4vqDIJ7luS8zFBZLsGYXhQWtl+BtoJLnNRYabAAfgND7DmoIEPTr2b5TOi2YxKa5tq1snTGPp+oIDNmnMXOmYEdmdfalHxP65U2PehXQhWlRcXni9JSUpvTadg0ERq5lWMHgGvhbqV8BBq4dV9ScyFEr5/8Fly0W9HvVvt8r354vIhjhXwnP0iDRGSfHJJT0iFdwsk/z/fWvHXvv7/sb/jB3Op7i5lN8qL8rUd7FbEy</latexit>

To make it a little harder

Sebastian Raschka STAT 479: Deep Learning SS 2019 21

Triplet Loss

Anchor Positive Anchor Negative

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

d(A,P) + ↵ d(A,N)

kf(A)� f(P)k22 + ↵ kf(A)� f(N)k22

kf(A)� f(P)k22 + ↵� kf(A)� f(N)k22 0
<latexit sha1_base64="0JVEhkjHZS2sC77KWVIob048K28=">AAAConicjVFNbxMxEPUuBUr4aApHDrUISImg0W6oBMcWVKnqIU0FaSvFIZr1ziZWvd7F9iJF2/1h/A1u/Js6yaoKbQ+MPNLTm/fs8UyUS2FsEPz1/AcbDx893nzSePrs+Yut5vbLM5MVmuOQZzLTFxEYlELh0Aor8SLXCGkk8Ty6/Lqon/9CbUSmvtt5juMUpkokgoN11KT5m0U4FaoErWFelbwq4/bBBzrovGcg8xlQJvEnXXL9TkUZW5ySXSXtg85u0h502NWk7FU/XK47bgT9NcF/2Xfvta7aCCqGKq57nTRbQTdYBr0Lwhq0SB2DSfMPizNepKgsl2DMKAxyO3a3WcElVg1WGMyBX8IURw4qSNGMy+WIK/rOMTFNMu1SWbpk1x0lpMbM08gpU7Azc7u2IO+rjQqbfB6XQuWFRcVXDyWFpDaji33RWGjkVs4dAK6F65XyGWjg1m214YYQ3v7yXXDW64Yfu73Tvdb+l3ocm+Q1eUPaJCSfyD45IgMyJNzb8Q69vnfiv/WP/VP/20rqe7XnFfknfHYNPJDJRw==</latexit>

Rearrange

Sebastian Raschka STAT 479: Deep Learning SS 2019 22

Triplet Loss

Anchor Positive Anchor Negative

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

L(A,P,N) = max
�
kf(A)� f(P)k22 + ↵� kf(A)� f(N)k22, 0

�
<latexit sha1_base64="LbEr9Mjr4bMJEovqucARexOOMFo=">AAACRXicbVA9axtBEN2T8+HITizHZZolwnAikrhTAnETsOImhREKRLZAq4i51Z60eO+D3bkQcdafc+M+nf9BmhQxxq29+iAosh8MPN6bYWZekCpp0POunMLGk6fPnm++KG5tv3y1U9p9fWKSTHPR4YlKdDcAI5SMRQclKtFNtYAoUOI0ODua+ac/hDYyib/hJBX9CEaxDCUHtNKgxFgEOOag8uOp26zSdpW2Kp+s+JMyJUJ02X noNiu10G1X2Pkgb0y/23rHQKVjqP0zWytmlXpMy9EYK4NS2at7c9CHxF+SMlmiPSj9YsOEZ5GIkSswpud7KfZz0Ci5EtMiy4xIgZ/BSPQsjSESpp/PU5jSfasMaZhoWzHSubo6kUNkzCQKbOfsZ7PuzcTHvF6G4UE/l3GaoYj5YlGYKYoJnUVKh1ILjmpiCXAt7a2Uj0EDRxt80Ybgr7/8kJw06v77euPrh/Lh52Ucm+QNeUtc4pOP5JB8IW3SIZxckN/kL7l2Lp0/zo1zu2gtOMuZPfIfnLt79riuaA==</latexit>

Bounded loss function for training:

Sebastian Raschka STAT 479: Deep Learning SS 2019 23

Triplet Loss

Anchor Positive Anchor Negative

Want encodings to be very similar

(small distance)

Want encodings to be very different

(large distance)

L(A,P,N) = max
�
kf(A)� f(P)k22 + ↵� kf(A)� f(N)k22, 0

�
<latexit sha1_base64="LbEr9Mjr4bMJEovqucARexOOMFo=">AAACRXicbVA9axtBEN2T8+HITizHZZolwnAikrhTAnETsOImhREKRLZAq4i51Z60eO+D3bkQcdafc+M+nf9BmhQxxq29+iAosh8MPN6bYWZekCpp0POunMLGk6fPnm++KG5tv3y1U9p9fWKSTHPR4YlKdDcAI5SMRQclKtFNtYAoUOI0ODua+ac/hDYyib/hJBX9CEaxDCUHtNKgxFgEOOag8uOp26zSdpW2Kp+s+JMyJUJ02X noNiu10G1X2Pkgb0y/23rHQKVjqP0zWytmlXpMy9EYK4NS2at7c9CHxF+SMlmiPSj9YsOEZ5GIkSswpud7KfZz0Ci5EtMiy4xIgZ/BSPQsjSESpp/PU5jSfasMaZhoWzHSubo6kUNkzCQKbOfsZ7PuzcTHvF6G4UE/l3GaoYj5YlGYKYoJnUVKh1ILjmpiCXAt7a2Uj0EDRxt80Ybgr7/8kJw06v77euPrh/Lh52Ucm+QNeUtc4pOP5JB8IW3SIZxckN/kL7l2Lp0/zo1zu2gtOMuZPfIfnLt79riuaA==</latexit>

In practice: Selecting good pairs (those that are "hard")  
is crucial during training

Sebastian Raschka STAT 479: Deep Learning SS 2019 24

We also explored the offline generation of triplets in con-
junction with the online generation and it may allow the use
of smaller batch sizes, but the experiments were inconclu-
sive.

Selecting the hardest negatives can in practice lead to bad
local minima early on in training, specifically it can result
in a collapsed model (i.e. f(x) = 0). In order to mitigate
this, it helps to select xn

i such that

kf(xa
i)� f(xp

i)k
2
2 < kf(xa

i)� f(xn
i)k

2
2 . (3)

We call these negative exemplars semi-hard, as they are fur-
ther away from the anchor than the positive exemplar, but
still hard because the squared distance is close to the anchor-
positive distance. Those negatives lie inside the margin ↵.

As mentioned before, correct triplet selection is crucial
for fast convergence. On the one hand we would like to use
small mini-batches as these tend to improve convergence
during Stochastic Gradient Descent (SGD) [20]. On the
other hand, implementation details make batches of tens to
hundreds of exemplars more efficient. The main constraint
with regards to the batch size, however, is the way we select
hard relevant triplets from within the mini-batches. In most
experiments we use a batch size of around 1,800 exemplars.

3.3. Deep Convolutional Networks
In all our experiments we train the CNN using Stochastic

Gradient Descent (SGD) with standard backprop [8, 11] and
AdaGrad [5]. In most experiments we start with a learning
rate of 0.05 which we lower to finalize the model. The mod-
els are initialized from random, similar to [16], and trained
on a CPU cluster for 1,000 to 2,000 hours. The decrease in
the loss (and increase in accuracy) slows down drastically
after 500h of training, but additional training can still sig-
nificantly improve performance. The margin ↵ is set to 0.2.

We used two types of architectures and explore their
trade-offs in more detail in the experimental section. Their
practical differences lie in the difference of parameters and
FLOPS. The best model may be different depending on the
application. E.g. a model running in a datacenter can have
many parameters and require a large number of FLOPS,
whereas a model running on a mobile phone needs to have
few parameters, so that it can fit into memory. All our
models use rectified linear units as the non-linear activation
function.

The first category, shown in Table 1, adds 1⇥1⇥d con-
volutional layers, as suggested in [9], between the standard
convolutional layers of the Zeiler&Fergus [22] architecture
and results in a model 22 layers deep. It has a total of 140
million parameters and requires around 1.6 billion FLOPS
per image.

The second category we use is based on GoogLeNet
style Inception models [16]. These models have 20⇥ fewer
parameters (around 6.6M-7.5M) and up to 5⇥ fewer FLOPS

layer size-in size-out kernel param FLPS
conv1 220⇥220⇥3 110⇥110⇥64 7⇥7⇥3, 2 9K 115M
pool1 110⇥110⇥64 55⇥55⇥64 3⇥3⇥64, 2 0
rnorm1 55⇥55⇥64 55⇥55⇥64 0
conv2a 55⇥55⇥64 55⇥55⇥64 1⇥1⇥64, 1 4K 13M
conv2 55⇥55⇥64 55⇥55⇥192 3⇥3⇥64, 1 111K 335M
rnorm2 55⇥55⇥192 55⇥55⇥192 0
pool2 55⇥55⇥192 28⇥28⇥192 3⇥3⇥192, 2 0
conv3a 28⇥28⇥192 28⇥28⇥192 1⇥1⇥192, 1 37K 29M
conv3 28⇥28⇥192 28⇥28⇥384 3⇥3⇥192, 1 664K 521M
pool3 28⇥28⇥384 14⇥14⇥384 3⇥3⇥384, 2 0
conv4a 14⇥14⇥384 14⇥14⇥384 1⇥1⇥384, 1 148K 29M
conv4 14⇥14⇥384 14⇥14⇥256 3⇥3⇥384, 1 885K 173M
conv5a 14⇥14⇥256 14⇥14⇥256 1⇥1⇥256, 1 66K 13M
conv5 14⇥14⇥256 14⇥14⇥256 3⇥3⇥256, 1 590K 116M
conv6a 14⇥14⇥256 14⇥14⇥256 1⇥1⇥256, 1 66K 13M
conv6 14⇥14⇥256 14⇥14⇥256 3⇥3⇥256, 1 590K 116M
pool4 14⇥14⇥256 7⇥7⇥256 3⇥3⇥256, 2 0
concat 7⇥7⇥256 7⇥7⇥256 0
fc1 7⇥7⇥256 1⇥32⇥128 maxout p=2 103M 103M
fc2 1⇥32⇥128 1⇥32⇥128 maxout p=2 34M 34M
fc7128 1⇥32⇥128 1⇥1⇥128 524K 0.5M
L2 1⇥1⇥128 1⇥1⇥128 0
total 140M 1.6B

Table 1. NN1. This table show the structure of our
Zeiler&Fergus [22] based model with 1⇥1 convolutions in-
spired by [9]. The input and output sizes are described
in rows⇥ cols⇥#filters. The kernel is specified as
rows⇥ cols, stride and the maxout [6] pooling size as p = 2.

(between 500M-1.6B). Some of these models are dramati-
cally reduced in size (both depth and number of filters), so
that they can be run on a mobile phone. One, NNS1, has
26M parameters and only requires 220M FLOPS per image.
The other, NNS2, has 4.3M parameters and 20M FLOPS.
Table 2 describes NN2 our largest network in detail. NN3
is identical in architecture but has a reduced input size of
160x160. NN4 has an input size of only 96x96, thereby
drastically reducing the CPU requirements (285M FLOPS
vs 1.6B for NN2). In addition to the reduced input size it
does not use 5x5 convolutions in the higher layers as the
receptive field is already too small by then. Generally we
found that the 5x5 convolutions can be removed throughout
with only a minor drop in accuracy. Figure 4 compares all
our models.

4. Datasets and Evaluation
We evaluate our method on four datasets and with the ex-

ception of Labelled Faces in the Wild and YouTube Faces
we evaluate our method on the face verification task. I.e.
given a pair of two face images a squared L2 distance
threshold D(xi, xj) is used to determine the classification
of same and different. All faces pairs (i, j) of the same iden-

Schroff, Florian, Dmitry Kalenichenko, and
James Philbin. "Facenet: A unified embedding for
face recognition and clustering." In Proceedings
of the IEEE conference on computer vision and
pattern recognition, pp. 815-823. 2015.

Architecture used

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 25

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

jpeg q val-rate
10 67.3%
20 81.4%
30 83.9%
50 85.5%
70 86.1%
90 86.5%

#pixels val-rate
1,600 37.8%
6,400 79.5%

14,400 84.5%
25,600 85.7%
65,536 86.4%

Table 4. Image Quality. The table on the left shows the effect on
the validation rate at 10E-3 precision with varying JPEG quality.
The one on the right shows how the image size in pixels effects the
validation rate at 10E-3 precision. This experiment was done with
NN1 on the first split of our test hold-out dataset.

#dims VAL

64 86.8%± 1.7
128 87.9%± 1.9
256 87.7%± 1.9
512 85.6%± 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five
splits.

mance. This is notable, because the network was trained on
220x220 input images. Training with lower resolution faces
could improve this range further.

5.4. Embedding Dimensionality
We explored various embedding dimensionalities and se-

lected 128 for all experiments other than the comparison re-
ported in Table 5. One would expect the larger embeddings
to perform at least as good as the smaller ones, however, it is
possible that they require more training to achieve the same
accuracy. That said, the differences in the performance re-
ported in Table 5 are statistically insignificant.

It should be noted, that during training a 128 dimensional
float vector is used, but it can be quantized to 128-bytes
without loss of accuracy. Thus each face is compactly rep-
resented by a 128 dimensional byte vector, which is ideal
for large scale clustering and recognition. Smaller embed-
dings are possible at a minor loss of accuracy and could be
employed on mobile devices.

5.5. Amount of Training Data
Table 6 shows the impact of large amounts of training

data. Due to time constraints this evaluation was run on a
smaller model; the effect may be even larger on larger mod-
els. It is clear that using tens of millions of exemplars results
in a clear boost of accuracy on our personal photo test set
from section 4.2. Compared to only millions of images the

#training images VAL

2,600,000 76.3%
26,000,000 85.1%
52,000,000 85.1%

260,000,000 86.2%

Table 6. Training Data Size. This table compares the performance
after 700h of training for a smaller model with 96x96 pixel inputs.
The model architecture is similar to NN2, but without the 5x5 con-
volutions in the Inception modules.

False accept

False reject

Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW.

relative reduction in error is 60%. Using another order of
magnitude more images (hundreds of millions) still gives a
small boost, but the improvement tapers off.

5.6. Performance on LFW

We evaluate our model on LFW using the standard pro-
tocol for unrestricted, labeled outside data. Nine training
splits are used to select the L2-distance threshold. Classi-
fication (same or different) is then performed on the tenth
test split. The selected optimal threshold is 1.242 for all test

FaceNet - Results

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 26

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

jpeg q val-rate
10 67.3%
20 81.4%
30 83.9%
50 85.5%
70 86.1%
90 86.5%

#pixels val-rate
1,600 37.8%
6,400 79.5%

14,400 84.5%
25,600 85.7%
65,536 86.4%

Table 4. Image Quality. The table on the left shows the effect on
the validation rate at 10E-3 precision with varying JPEG quality.
The one on the right shows how the image size in pixels effects the
validation rate at 10E-3 precision. This experiment was done with
NN1 on the first split of our test hold-out dataset.

#dims VAL

64 86.8%± 1.7
128 87.9%± 1.9
256 87.7%± 1.9
512 85.6%± 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five
splits.

mance. This is notable, because the network was trained on
220x220 input images. Training with lower resolution faces
could improve this range further.

5.4. Embedding Dimensionality
We explored various embedding dimensionalities and se-

lected 128 for all experiments other than the comparison re-
ported in Table 5. One would expect the larger embeddings
to perform at least as good as the smaller ones, however, it is
possible that they require more training to achieve the same
accuracy. That said, the differences in the performance re-
ported in Table 5 are statistically insignificant.

It should be noted, that during training a 128 dimensional
float vector is used, but it can be quantized to 128-bytes
without loss of accuracy. Thus each face is compactly rep-
resented by a 128 dimensional byte vector, which is ideal
for large scale clustering and recognition. Smaller embed-
dings are possible at a minor loss of accuracy and could be
employed on mobile devices.

5.5. Amount of Training Data
Table 6 shows the impact of large amounts of training

data. Due to time constraints this evaluation was run on a
smaller model; the effect may be even larger on larger mod-
els. It is clear that using tens of millions of exemplars results
in a clear boost of accuracy on our personal photo test set
from section 4.2. Compared to only millions of images the

#training images VAL

2,600,000 76.3%
26,000,000 85.1%
52,000,000 85.1%

260,000,000 86.2%

Table 6. Training Data Size. This table compares the performance
after 700h of training for a smaller model with 96x96 pixel inputs.
The model architecture is similar to NN2, but without the 5x5 con-
volutions in the Inception modules.

False accept

False reject

Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW.

relative reduction in error is 60%. Using another order of
magnitude more images (hundreds of millions) still gives a
small boost, but the improvement tapers off.

5.6. Performance on LFW

We evaluate our model on LFW using the standard pro-
tocol for unrestricted, labeled outside data. Nine training
splits are used to select the L2-distance threshold. Classi-
fication (same or different) is then performed on the tenth
test split. The selected optimal threshold is 1.242 for all test

FaceNet - Results

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 27

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

jpeg q val-rate
10 67.3%
20 81.4%
30 83.9%
50 85.5%
70 86.1%
90 86.5%

#pixels val-rate
1,600 37.8%
6,400 79.5%

14,400 84.5%
25,600 85.7%
65,536 86.4%

Table 4. Image Quality. The table on the left shows the effect on
the validation rate at 10E-3 precision with varying JPEG quality.
The one on the right shows how the image size in pixels effects the
validation rate at 10E-3 precision. This experiment was done with
NN1 on the first split of our test hold-out dataset.

#dims VAL

64 86.8%± 1.7
128 87.9%± 1.9
256 87.7%± 1.9
512 85.6%± 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five
splits.

mance. This is notable, because the network was trained on
220x220 input images. Training with lower resolution faces
could improve this range further.

5.4. Embedding Dimensionality
We explored various embedding dimensionalities and se-

lected 128 for all experiments other than the comparison re-
ported in Table 5. One would expect the larger embeddings
to perform at least as good as the smaller ones, however, it is
possible that they require more training to achieve the same
accuracy. That said, the differences in the performance re-
ported in Table 5 are statistically insignificant.

It should be noted, that during training a 128 dimensional
float vector is used, but it can be quantized to 128-bytes
without loss of accuracy. Thus each face is compactly rep-
resented by a 128 dimensional byte vector, which is ideal
for large scale clustering and recognition. Smaller embed-
dings are possible at a minor loss of accuracy and could be
employed on mobile devices.

5.5. Amount of Training Data
Table 6 shows the impact of large amounts of training

data. Due to time constraints this evaluation was run on a
smaller model; the effect may be even larger on larger mod-
els. It is clear that using tens of millions of exemplars results
in a clear boost of accuracy on our personal photo test set
from section 4.2. Compared to only millions of images the

#training images VAL

2,600,000 76.3%
26,000,000 85.1%
52,000,000 85.1%

260,000,000 86.2%

Table 6. Training Data Size. This table compares the performance
after 700h of training for a smaller model with 96x96 pixel inputs.
The model architecture is similar to NN2, but without the 5x5 con-
volutions in the Inception modules.

False accept

False reject

Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW.

relative reduction in error is 60%. Using another order of
magnitude more images (hundreds of millions) still gives a
small boost, but the improvement tapers off.

5.6. Performance on LFW

We evaluate our model on LFW using the standard pro-
tocol for unrestricted, labeled outside data. Nine training
splits are used to select the L2-distance threshold. Classi-
fication (same or different) is then performed on the tenth
test split. The selected optimal threshold is 1.242 for all test

FaceNet - Results

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 28

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition
and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815-823. 2015.

jpeg q val-rate
10 67.3%
20 81.4%
30 83.9%
50 85.5%
70 86.1%
90 86.5%

#pixels val-rate
1,600 37.8%
6,400 79.5%

14,400 84.5%
25,600 85.7%
65,536 86.4%

Table 4. Image Quality. The table on the left shows the effect on
the validation rate at 10E-3 precision with varying JPEG quality.
The one on the right shows how the image size in pixels effects the
validation rate at 10E-3 precision. This experiment was done with
NN1 on the first split of our test hold-out dataset.

#dims VAL

64 86.8%± 1.7
128 87.9%± 1.9
256 87.7%± 1.9
512 85.6%± 2.0

Table 5. Embedding Dimensionality. This Table compares the
effect of the embedding dimensionality of our model NN1 on our
hold-out set from section 4.1. In addition to the VAL at 10E-3
we also show the standard error of the mean computed across five
splits.

mance. This is notable, because the network was trained on
220x220 input images. Training with lower resolution faces
could improve this range further.

5.4. Embedding Dimensionality
We explored various embedding dimensionalities and se-

lected 128 for all experiments other than the comparison re-
ported in Table 5. One would expect the larger embeddings
to perform at least as good as the smaller ones, however, it is
possible that they require more training to achieve the same
accuracy. That said, the differences in the performance re-
ported in Table 5 are statistically insignificant.

It should be noted, that during training a 128 dimensional
float vector is used, but it can be quantized to 128-bytes
without loss of accuracy. Thus each face is compactly rep-
resented by a 128 dimensional byte vector, which is ideal
for large scale clustering and recognition. Smaller embed-
dings are possible at a minor loss of accuracy and could be
employed on mobile devices.

5.5. Amount of Training Data
Table 6 shows the impact of large amounts of training

data. Due to time constraints this evaluation was run on a
smaller model; the effect may be even larger on larger mod-
els. It is clear that using tens of millions of exemplars results
in a clear boost of accuracy on our personal photo test set
from section 4.2. Compared to only millions of images the

#training images VAL

2,600,000 76.3%
26,000,000 85.1%
52,000,000 85.1%

260,000,000 86.2%

Table 6. Training Data Size. This table compares the performance
after 700h of training for a smaller model with 96x96 pixel inputs.
The model architecture is similar to NN2, but without the 5x5 con-
volutions in the Inception modules.

False accept

False reject

Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW.

relative reduction in error is 60%. Using another order of
magnitude more images (hundreds of millions) still gives a
small boost, but the improvement tapers off.

5.6. Performance on LFW

We evaluate our model on LFW using the standard pro-
tocol for unrestricted, labeled outside data. Nine training
splits are used to select the L2-distance threshold. Classi-
fication (same or different) is then performed on the tenth
test split. The selected optimal threshold is 1.242 for all test

FaceNet - Results

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 29

...

Batch

DEEP ARCHITECTURE L2 Triplet
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Figure 3. The Triplet Loss minimizes the distance between an an-

chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives, as
used in [14] Eq. (2), we believe that the triplet loss is more
suitable for face verification. The motivation is that the loss
from [14] encourages all faces of one identity to be âĂŸpro-
jectedâĂŹ onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss
The embedding is represented by f(x) 2 Rd. It em-

beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. kf(x)k2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xa

i (anchor) of
a specific person is closer to all other images xp

i (positive)
of the same person than it is to any image xn

i (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

kxa
i � xp

i k
2
2 + ↵ < kxa

i � xn
i k22, 8 (xa

i , x
p
i , x

n
i) 2 T . (1)

where ↵ is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

NX

i

h
kf(xa

i)� f(xp
i)k

2
2 � kf(xa

i)� f(xn
i)k

2
2 + ↵

i

+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection
In order to ensure fast convergence it is crucial to select

triplets that violate the triplet constraint in Eq. (1). This
means that, given xa

i , we want to select an xp
i (hard pos-

itive) such that argmaxxp
i
kf(xa

i)� f(xp
i)k

2
2 and similarly

xn
i (hard negative) such that argminxn

i
kf(xa

i)� f(xn
i)k

2
2.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

kxk2 = kyk2 = 1
<latexit sha1_base64="R1Mm8Q5ncpaF5Dw/LmKG+zTkrng=">AAACEHicbZDLSsNAFIYn9VbrLerSzWARXZWkCroRim5cVrAXaEKYTCft0MmFmYkY0jyCG1/FjQtF3Lp059s4aSNq6w8DP985hznndyNGhTSMT620sLi0vFJeraytb2xu6ds7bRHGHJMWDlnIuy4ShNGAtCSVjHQjTpDvMtJxR5d5vXNLuKBhcCOTiNg+GgTUoxhJhRz90BpbPpJD10vvMmvspPXs/Acl38h09KpRMyaC88YsTB UUajr6h9UPceyTQGKGhOiZRiTtFHFJMSNZxYoFiRAeoQHpKRsgnwg7nRyUwQNF+tALuXqBhBP6eyJFvhCJ76rOfFMxW8vhf7VeLL0zO6VBFEsS4OlHXsygDGGeDuxTTrBkiTIIc6p2hXiIOMJSZVhRIZizJ8+bdr1mHtfq1yfVxkURRxnsgX1wBExwChrgCjRBC2BwDx7BM3jRHrQn7VV7m7aWtGJmF/yR9v4FApadzw==</latexit>

Suppose we have 2 L2-normalized vectors:

The squared L2 distance is then proportional to the cosine similarity

kx� yk22 = (x� y)>(x� y)

= x>x� 2x>y + y>y

= 2� 2x>y

= 2� 2 cos(x,y)
<latexit sha1_base64="YysXGFIdYoo+fPWRW/Qv1jx2ocY=">AAADC3ichVJBT9swFHbC2FjHtsKOu3irNjFtq5IMiV0mVePCsZNWQGpK5TgvxcKxI9tBRFnuu+yvcOEwhLjyB3bbv5nbBigUtCc96dP3fe/5+dlRxpk2nvfXcRceLD58tPS48WT56bPnzZXVbS1zRaFHJZdqNyIaOBPQM8xw2M0UkDTisBMdbI71nUNQmknx3RQZDFIyEixhlBhLDVecV2EEIyZKwtlIQFyFP8KUmP0oKY+qj5 ewsPSwDKo9m/jtl7U7Le/2ytDIrLpHxWFoS6+12o1n3AG+Xy6q99dwXpx2D/7TYsZFpcYzk37AN0YFEV9tZNhseW1vEnge+DVooTq6w+afMJY0T0EYyonWfd/LzKAkyjDKoWqEuYaM0AMygr6FgqSgB+XkLSv8xjIxTqSyKQyesLMVJUm1LtLIOscD69vamLxL6+cm+TwomchyA4JOD0pyjo3E44+BY6aAGl5YQKhidlZM94ki1Njv07BL8G9feR5sB23/Uzv4tt7qfK3XsYReotdoDfloA3XQFuqiHqLOT+fY+e2cur/cE/fMPZ9aXaeueYFuhHvxD7nk/CI=</latexit>

cos(x,y) =
x>y

kxk · kyk 2 [�1, 1]
<latexit sha1_base64="F/vMrAQGC10msF3+P6bKFI8RJh8=">AAACWHicbVFLSwMxGMyu7/qqevQSLIKCll0V9CIUvXhUsCo0a8mmWQ1mkyX5Vly2+ycFD/pXvJjWSn0NBIaZ+ciXSZxJYSEIXj1/YnJqemZ2rja/sLi0XF9ZvbI6N4y3mZba3MTUcikUb4MAyW8yw2kaS34dP5wO/OtHbqzQ6hKKjEcpvVMiEYyCk7p1TZi2eIukFO7jpHyqdvAXL6rtY5IYysqxe1sS0Fn1LVOVpD/2SR8T1tMw1gqnubxQnd1wJ4y69UbQDIbAf0k4Ig00wnm3/kx6muUpV8AktbYTBhlEJTUgmORVjeSWZ5Q90DvecVTRlNuoHBZT4U2n9HCijTsK8FD9PlHS1NoijV1ysK797Q3E/7xODslRVAqV5cAV+7woySUGjQct454wnIEsHKHMCLcrZvfUdQnuL2quhPD3k/+Sq71muN/cuzhotE5GdcyidbSBtlCIDlELnaFz1EYMvaB3b9Kb8t585M/4c59R3xvNrKEf8Fc/AC7ktnY=</latexit>

where

Sebastian Raschka STAT 479: Deep Learning SS 2019 30

•Cosine Similarity-based triplet loss:
Li, Chao, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying
Cao, Ajay Kannan, and Zhenyao Zhu. "Deep speaker: an end-to-end neural
speaker embedding system." arXiv preprint arXiv:1705.02304 (2017). 

•Angular Loss:
Wang, Jian, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. "Deep metric
learning with angular loss." In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2593-2601. 2017. 

•Large margin cosine loss:
Wang, Hao, Yitong Wang, Zheng` Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. "Cosface: Large margin cosine loss for deep face
recognition." In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5265-5274. 2018.

Optional: Recent Triplet Loss Variants
(not required), only for those who are interested

https://arxiv.org/abs/1705.02304?context=cs
https://arxiv.org/abs/1705.02304?context=cs
https://arxiv.org/abs/1708.01682
https://arxiv.org/abs/1708.01682
https://arxiv.org/abs/1801.09414
https://arxiv.org/abs/1801.09414

Sebastian Raschka STAT 479: Deep Learning SS 2019 !31

Additional Concepts to Wrap Up the 
Intro to Convolutional Neural Networks

Sebastian Raschka STAT 479: Deep Learning SS 2019 32

ConvNets and 3D Inputs

Action
Label

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D
 C

onv
3D

 C
onv

3D
 C

onv
3D

 C
onv

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

2

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 2

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

3

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 3

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 4

3D DenseBlock
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

Conv
Concat

3D Temporal Transition Layer

3D DenseBlock
Conv

Avg
Pooling

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

Figure 1: Temporal 3D ConvNet (T3D). Our Temporal Transition Layer (TTL) is applied to our DenseNet3D. T3D uses
video clips as input. The 3D feature-maps from the clips are densely propagated throughout the network. The TTL operates
on the different temporal depths, thus allowing the model to capture the appearance and temporal information from the short,
mid, and long-range terms. The output of the network is a video-level prediction.

agation, and state-of-the-art performance on image classi-
fication tasks. In specific, (i) we modify 2D DenseNet
by replacing the 2D kernels by 3D kernels in the standard
DenseNet architecture and we present it as DenseNet3D;
and (ii) introducing our new Temporal 3D ConvNets (T3D)
by deploying 3D temporal transition layer (TTL) instead of
transition layer in DenseNet. In both setups, the building
blocks of the network and the architecture choices proposed
in [17] are kept same.

Notation. The output feature-maps of the 3D Convolu-
tions and pooling kernels at the l

th layer extracted for an
input video, is a matrix x 2 Rh⇥w⇥c where h, w and c

are the height, width, and number of channels of the feature
maps, resp. The 3D convolution and pooling kernels are of
size (s⇥ s⇥ d), where d is the temporal depth and s is the
spatial size of the kernels.

3D Dense Connectivity. Similar to 2D dense connectiv-
ity, in our network it is 3D dense connectivity that directly
connects the 3D output of any layer to all subsequent layers
in the 3D Dense block. The composite function Hl in the lth
layer receives the {xi}l�1

i=0 3D feature maps of all preceding
(l � 1) layers as input. The output feature-map of Hl in the
l
th layer is given by:

xl = Hl([x0, x1, . . . , xl�1]) (1)

where [x0, x1, . . . , xl�1] denotes that the features maps are
concatenated. The spatial sizes of the xi features maps are
the same. The Hl(·) is a composite function of BN-ReLU-
3DConv operations.

Temporal Transition Layer. Fig. 1 shows a sketch of
Temporal Transition Layer (TTL). TTL is composed of sev-
eral variable 3D Convolution temporal depth kernels and a
3D pooling layer, the depth of 3D Conv kernels ranges be-
tween d, d 2 {T1, . . . , TD}, where Td have different tempo-

ral depths. The advantage of TTL is that it captures the short,
mid, and long term dynamics, that embody important in-
formation not captured when working with some fixed tem-
poral depth homogeneously throughout the network. The
feature-map of l

th layer is fed as input to the TTL layer,
TTL : x ! x

0
, resulting in a dense-aggregated feature rep-

resentation x
0
, where x 2 Rh⇥w⇥c and x

0 2 Rh⇥w⇥c
0

.
In specific, the feature-map from l

th, xl is convolved with
K variable 3D convolution kernel temporal depths, result-
ing to intermediate feature-maps {S1, S2, . . . , SK}, S1 2
Rh⇥w⇥c1 , S2 2 Rh⇥w⇥c2 , SK 2 Rh⇥w⇥cK , where c1,
c2, and cK have different channel-depths as xl is convolved
with different 3D convolution kernel temporal depths, while
the spatial size (h,w) is same for all the {Sk}Kk=1 feature-
maps. These feature-maps {Sk}Kk=1 are simply concate-
nated into a single tensor [S1, S2, . . . , SK] and then fed into
the 3D pooling layer, resulting to the output TTL feature-
map x

0
. The output of TTL, x

0
is fed as input to (l + 1)th

layer in the T3D architecture. The TTL layer is learned in
an end-to-end network learning, as shown in Fig. 1.

In our work, we also compare T3D with DenseNet3D i.e
with the standard transition layer but in 3D. Compared to
the DenseNet3D, T3D performs significantly better in per-
formance, shown in Experimental Section 4. Although we
agree that T3D model has 1.3 times more model parameters
than DenseNet3D, but it is worth to have it because of its
outstanding performance. It is also worth saying that, one
can readily employ our TTL in other architectures too such
as in Res3D [30] or I3D [4], instead of using fixed 3D Con-
volutions homogeneously through out the network.

3.2. Supervision or Knowledge Transfer

In this section, we describe our method for supervision
transfer between cross architectures, i.e. pre-trained 2D

3

Also very popular for Medical Imaging (MRI, CT scans ...)

Diba, Ali, Mohsen Fayyaz, Vivek Sharma, Amir Hossein Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh, and Luc
Van Gool. "Temporal 3d convnets: New architecture and transfer learning for video classification." arXiv preprint arXiv:
1711.08200 (2017).

https://arxiv.org/abs/1711.08200

Sebastian Raschka STAT 479: Deep Learning SS 2019 33

ConvNets and 3D Inputs

X 2 Rn1⇥n2⇥cin
<latexit sha1_base64="GzJ9t8GJxsmHc4EQcbLCmf2kfPA=">AAACIXicbVDLSsNAFJ34rPUVdelmsAiuSlIFuyy6cVnFPqCpYTKdtEMnkzBzI5SQX3Hjr7hxoUh34s84fQjaemDg3HPv5c45QSK4Bsf5tFZW19Y3Ngtbxe2d3b19++CwqeNUUdagsYhVOyCaCS5ZAzgI1k4UI1EgWCsYXk/6rUemNI/lPYwS1o1IX/KQUwJG8u2qFxEYBGHWzrHHJZ6VQXaXP2TSd7EHPGIaS7/yQ6mfcZnnvl1yys4UeJm4c1JCc9R9e+z1YppGTAIVROuO6yTQzYgCTgXLi16qWULokPRZx1BJzLFuNnWY41Oj9HAYK/Mk4Kn6eyMjkdajKDCTEwN6sTcR/+t1UgirXWMoSYFJOjsUpgJDjCdx4R5XjIIYGUKo4uavmA6IIhRMqEUTgrtoeZk0K2X3vFy5vSjVruZxFNAxOkFnyEWXqIZuUB01EEVP6AW9oXfr2Xq1PqzxbHTFmu8coT+wvr4Bx1+j5A==</latexit>

W 2 Rm1⇥m2⇥cin⇥cout
<latexit sha1_base64="IvH8iHAHqViLIgIXdealOqNYh9w=">AAACMHicbVBNSwMxEM36bf2qevQSLIKnslsFPYoe9FjFtkJ3XbJpVoNJdklmhbLsT/LiT9GLgiJe/RVm2wq1+iDw5s0Mk/eiVHADrvvqTE3PzM7NLyxWlpZXVteq6xttk2SashZNRKKvImKY4Iq1gINgV6lmREaCdaK7k7LfuWfa8ERdQj9lgSQ3isecErBSWD31JYHbKM47Bfa5wsMyyi+K61yGHvaBS2awDBs/lIY5V8VYlWRQFGG15tbdAfBf4o1IDY3QDKtPfi+hmWQKqCDGdD03hSAnGjgVrKj4mWEpoXfkhnUtVcReC/KB4QLvWKWH40TbpwAP1PGNnEhj+jKyk6UfM9krxf963Qziw8D6SzNgig4PxZnAkOAyPdzjmlEQfUsI1dz+FdNbogkFm3HFhuBNWv5L2o26t1dvnO/Xjo5HcSygLbSNdpGHDtAROkNN1EIUPaBn9IbenUfnxflwPoejU85oZxP9gvP1DSPwqkc=</latexit>

b 2 Rcout
<latexit sha1_base64="IEwnrR7t13ocT+tV1TkUvtNEGRY=">AAACDHicbVDLSgMxFM3UV62vqks3wVJwVWaqoMuiG5dV7APasWTSTBuaSYYkI5QwH+DGX3HjQhG3foA7/8ZMOwttPRA4Ofde7rkniBlV2nW/ncLK6tr6RnGztLW9s7tX3j9oK5FITFpYMCG7AVKEUU5ammpGurEkKAoY6QSTq6zeeSBSUcHv9DQmfoRGnIYUI22lQbnSj5AeB6EJUtinHM6/gblN7w0eGJHoNLVdbs2dAS4TLycVkKM5KH/1hwInEeEaM6RUz3Nj7RskNcWMpKV+okiM8ASNSM9SjiKifDM7JoVVqwxhKKR9XMOZ+nvCoEipaWT9VjOvarGWif/VeokOL3xDeZxowvF8UZgwqAXMkoFDKgnWbGoJwpJarxCPkURY2/xKNgRv8eRl0q7XvNNa/eas0rjM4yiCI3AMToAHzkEDXIMmaAEMHsEzeAVvzpPz4rw7H/PWgpPPHII/cD5/ANp9nCQ=</latexit>

Same concept as before except 
that we now have 3D 
images and kernels

Sebastian Raschka STAT 479: Deep Learning SS 2019 34

ConvNets and 3D Inputs

https://pytorch.org/docs/stable/nn.html?highlight=conv3d#torch.nn.functional.conv3d

Usage is similar to Conv2d, except that we now have 3 dimensional 
kernels

https://pytorch.org/docs/stable/nn.html?highlight=conv3d#torch.nn.functional.conv3d

Sebastian Raschka STAT 479: Deep Learning SS 2019

ConvNets for Text with 1D Convolutions

 35

We can think of text as image with width 1

This Is my great sentence

(concatenated 
word embeddings)

Sebastian Raschka STAT 479: Deep Learning SS 2019

ConvNets for Text with 1D Convolutions

 36

We can think of text as image with width 1

This Is my great sentence

(concatenated 
word embeddings)

https://pytorch.org/docs/stable/nn.html#conv1d

https://pytorch.org/docs/stable/nn.html#conv1d

Sebastian Raschka STAT 479: Deep Learning SS 2019 37

o =

�
i+ 2p� k � (k � 1)(d� 1)

s

⌫
+ 1

<latexit sha1_base64="4KZ+QA5tYXR9lele2jUwNZeFu4c=">AAACI3icbVDLSgMxFM34rPVVdekmWIRKaZmpgiIIRTcuK9gHdErJpJk2TGYyJHeEMvRf3PgrblwoxY0L/8X0sdDWAwmHc84luceLBddg21/Wyura+sZmZiu7vbO7t587OGxomSjK6lQKqVoe0UzwiNWBg2CtWDESeoI1veBu4jefmNJcRo8wjFknJP2I+5wSMFI3dy1vXMF8cIUvpFSurwhNebGC41JQKgQl56zQM9co1SNX8f4AXDUNFrHTzeXtsj0FXibOnOTRHLVubuz2JE1CFgEVROu2Y8fQSYkCTgUbZd1Es5jQgPRZ29CIhEx30umOI3xqlB72pTInAjxVf0+kJNR6GHomGRIY6EVvIv7ntRPwrzopj+IEWERnD/mJwCDxpDDc44pREENDCFXc/BXTATE1gak1a0pwFldeJo1K2TkvVx4u8tXbeR0ZdIxOUAE56BJV0T2qoTqi6Bm9onf0Yb1Yb9bY+pxFV6z5zBH6A+v7B8kXoxk=</latexit>

Dilated Convolutions

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

A 2-dilated 2D convolution

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285

Sebastian Raschka STAT 479: Deep Learning SS 2019 !38

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z+ b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

Good results have also been achieved by representing a sentence 
as a matrix of word vectors and applying 2D convolutions 
(where each filter uses a different kernel size)

CNNs for Text (with 2D Convolutions)

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

https://arxiv.org/abs/1408.5882

Sebastian Raschka STAT 479: Deep Learning SS 2019 39

Transfer Learning

• A technique that may be useful for your class projects

• Key idea:

✦ Feature extraction layers may be generally useful

✦ Use a pre-trained model (e.g., pretrained on ImageNet)

✦ Freeze the weights: Only train last layer (or last few layers)

• Related approach: Finetuning, train a pre-trained network on your 
smaller dataset

Sebastian Raschka STAT 479: Deep Learning SS 2019 40

Transfer Learning
PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

Visualization from 
https://www.cs.toronto.edu/~frossard/post/vgg16/

VGG-16

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.cs.toronto.edu/~frossard/post/vgg16/

Sebastian Raschka STAT 479: Deep Learning SS 2019 41

Transfer Learning
PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

Visualization from 
https://www.cs.toronto.edu/~frossard/post/vgg16/

VGG-16

Freeze

Replace

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.cs.toronto.edu/~frossard/post/vgg16/

Sebastian Raschka STAT 479: Deep Learning SS 2019 42

Transfer Learning
https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 43

Transfer Learning
https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

Sebastian Raschka STAT 479: Deep Learning SS 2019 44

Transfer Learning Example

PyTorch example: https://github.com/rasbt/stat479-deep-learning-ss19/
blob/master/L13_intro-cnn/code/vgg16-transferlearning.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16-transferlearning.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16-transferlearning.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16-transferlearning.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019 45

https://modelzoo.co/model/pytorch-nlp

Pre-Trained Models for Text

https://modelzoo.co/model/pytorch-nlp

Sebastian Raschka STAT 479: Deep Learning SS 2019 46

(Optional) News

Sebastian Raschka STAT 479: Deep Learning SS 2019 47

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Sebastian Raschka STAT 479: Deep Learning SS 2019 48

Based on neural architecture search (NAS) and stochastic network generators

https://arxiv.org/abs/1904.01569

https://arxiv.org/abs/1904.01569

Sebastian Raschka STAT 479: Deep Learning SS 2019 49

Based on neural architecture search (NAS) and stochastic network generators

https://arxiv.org/abs/1904.01569

https://arxiv.org/abs/1904.01569

Sebastian Raschka STAT 479: Deep Learning SS 2019 50

Based on neural architecture search (NAS) and stochastic network generators

https://arxiv.org/abs/1904.01569

Also utilizes an 
LSTM controller with  
probabilistic behavior  
(will discuss LSTMs in a different
context next lecture)

https://arxiv.org/abs/1904.01569

Sebastian Raschka STAT 479: Deep Learning SS 2019 51

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/#calendar

Remaining Course Topics

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/#calendar

