Lecture 03

The Perceptron
And introduction to single-layer neural networks

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
Announcements

- Project groups (by next Tue), 3 members per group -- TA will set up a document where you can add your team member preferences

- Project topics (brainstorm with group members)

- HW1 (related to the Perceptron; more about that later)

- Piazza for questions, encouraged to help each other (but don't share your HW solutions)
The Most Complete Brain Map Ever Is Here: A Fly's 'Connectome'

It took 12 years and at least $40 million to chart a region about 250 micrometers across—about the thickness of two strands of hair.

https://www.wired.com/story/most-complete-brain-map-ever-is-here-a-flys-connectome/
After this lecture, you will be able to implement your first neuron model for making predictions!*

*Sorry, we are not going to implement a fruit fly brain, but if you are interested in a worm brain: "MNIST classification using the neuronal network of Caenorhabditis elegans"
https://github.com/vinayprabhu/Network_Science_Meets_Deep_Learning/blob/master/1_MNIST_C_Elegans.ipynb
Overview

1/5 -- Brains and neuron models

2/5 -- The perceptron learning rule

3/5 -- Optional: The perceptron convergence theorem

4/5 -- Geometric intuition

5/5 -- HW1
Do our brains use deep learning?
Inspired by Biological Brains and Neurons
Number of neurons in brains ...

<table>
<thead>
<tr>
<th>Name</th>
<th>Neurons in the brain/whole nervous system</th>
<th>Synapses</th>
<th>Details</th>
<th>Image</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponge</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>[5]</td>
</tr>
<tr>
<td>Trichoplax</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>[4]</td>
</tr>
<tr>
<td>Cliona intestinalis larva (sea squirt)</td>
<td>231</td>
<td>8617 (central nervous system only)</td>
<td></td>
<td></td>
<td>[5]</td>
</tr>
<tr>
<td>Asplanchna brightwellii (rotifer)</td>
<td>about 200</td>
<td></td>
<td>Brain only</td>
<td></td>
<td>[7]</td>
</tr>
<tr>
<td>Caenorhabditis elegans (roundworm)</td>
<td>302</td>
<td>~7,500</td>
<td></td>
<td></td>
<td>[8]</td>
</tr>
<tr>
<td>Jellyfish</td>
<td>5,600</td>
<td></td>
<td>Hydra vulgaris (H. attenuate)</td>
<td></td>
<td>[9]</td>
</tr>
</tbody>
</table>

On a sidenote:

- **Fin whale**: 15,000,000,000 - *Balaenoptera physalus*
 - *Homo sapiens*: (For average adult)
 - The human cerebral cortex, with an average 1293 g and 16 billion neurons, is slightly below expectations for a primate brain of 1.5 kg, while the human cerebellum, at 154 g and 69 billion neurons, matches or even slightly exceeds the expected.
 - ![Image](image)
 - Source: [55]

- **Human**: 16,000,000,000 - *Homo sapiens*
 - ![Image](image)
 - Source: [42][43][55]

- **Long-finned pilot whale**: 37,200,000,000 - *Globicephala melas*: "For the first time, we show that a species of dolphin has more neocortical neurons than any mammal studied to date including humans."
 - ![Image](image)
 - Source: [57]

A Biological Neuron

Diagram of a biological neuron showing dendrites, axon, nucleus, and a synapse.
Biological Neurons

Pyramidal neuron cells in mouse cortex

Synaptic connection is chemical

electrical postsynaptic potential accumulates; when it reaches a threshold => action potential signal
McCulloch & Pitts Neuron Model

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

Warren S. McCulloch and Walter H. Pitts 1943
Logical AND Gate

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical OR Gate

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$t=0.5 = 1$
Logical NOT Gate

<table>
<thead>
<tr>
<th>x_1</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$w_1 = -1$

$t = -0.5$
Logical XOR Gate

(Take-home exercise)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Training Single-Layer Neural Networks

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem
4/5 -- Geometric intuition
5/5 -- HW1
Rosenblatt's Perceptron

A learning rule for the computational/mathematical neuron model

Perceptron Variants

Note that Rosenblatt (and later others) proposed many variants of the Perceptron model and learning rule. We discuss a "basic" version; let's say,

"Perceptron" = "a classic Rosenblatt Perceptron"
A Computational Model of a Biological Neuron

\[f(z) = \begin{cases}
0, & z \leq \theta \\
1, & z > \theta
\end{cases} \]

\[f_{\theta} \left(\sum_{i=1}^{m} x_i w_i \right) = \hat{y} \]
Terminology

General (logistic regression, multilayer nets, ...):
- Net input = weighted inputs, z
- Activations = activation function(net input); $a = \sigma(z)$
- Label output = threshold(activations of last layer); $\hat{y} = f(a)$

Special cases:
- In perceptron: activation function = threshold function
- In linear regression: activation = net input = output

\[
\begin{align*}
\text{Inputs} & \quad \sum_{i=1}^{m} x_i w_i \quad \text{Net input} \\
\text{Threshold} & \quad f(z) = \begin{cases}
0, & z \leq \theta \\
1, & z > \theta
\end{cases} \\
\hat{y} & = f(\theta) (\sum_{i=1}^{m} x_i w_i) = \hat{y}
\end{align*}
\]
Perceptron Output

\[\hat{y} = \begin{cases}
0, & z \leq \theta \\
1, & z > \theta
\end{cases} \]

More convenient to re-arrange:

\[\hat{y} = \begin{cases}
0, & z - \theta \leq 0 \\
1, & z - \theta > 0
\end{cases} \]

negative threshold

\[-\theta = \text{"bias"} \]
General Notation for Single-Layer Neural Networks

- Common notation (in most modern texts): define the bias unit separately
- However, often inconvenient for mathematical notation

\[
\sigma \left(\sum_{i=1}^{m} x_i w_i + b \right) = \sigma (x^T w + b) = \hat{y}
\]

\[
\sigma(z) = \begin{cases}
0, & z \leq 0 \\
1, & z > 0
\end{cases}
\]

\[
b = -\theta
\]
General Notation for Single-Layer Neural Networks

- Often more convenient notation: define bias unit as w_0 and prepend a 1 to each input vector as an additional "feature" value
- Modifying input vectors is more inconvenient/inefficient coding-wise, though

\[
\sigma \left(\sum_{i=0}^{m} x_i w_i \right) = \sigma (x^T w) = \hat{y}
\]

\[
\sigma(z) = \begin{cases}
0, & z \leq 0 \\
1, & z > 0
\end{cases}
\]

\[
w_0 = -\theta
\]
General Notation for Single-Layer Neural Networks

\[\sum_{i=0}^{m} x_i w_i \]

\[\sigma \left(\sum_{i=0}^{m} x_i w_i \right) = \sigma(\mathbf{x}^T \mathbf{w}) = \hat{y} \]

\[\sigma(z) = \begin{cases}
0, & z - \theta \leq 0 \\
1, & z - \theta > 0
\end{cases} \]

\[w_0 = -\theta \]
Interlude: "Vectorization" in Python

Question for you: What are we computing here?

In [1]:

```python
x0, x1, x2 = 1., 2., 3.
bias, w1, w2 = 0.1, 0.3, 0.5
x = [x0, x1, x2]
w = [bias, w1, w2]
```

A simple for-loop:

In [2]:

```python
z = 0.
for i in range(len(x)):
    z += x[i] * w[i]
print(z)
```

2.2
Interlude: "Vectorization" in Python

A simple for-loop:

In [2]:

```python
z = 0.
for i in range(len(x)):
    z += x[i] * w[i]
print(z)
```

2.2

A little bit better, list comprehensions:

In [3]:

```python
z = sum(x_i*w_i for x_i, w_i in zip(x, w))
print(z)
```

2.2
Interlude: "Vectorization" in Python

list comprehensions (still sequential):

In [3]:

```python
z = sum(x_i*w_i for x_i, w_i in zip(x, w))
print(z)
```

2.2

A vectorized implementation using **NumPy**:

In [4]:

```python
import numpy as np

x_vec, w_vec = np.array(x), np.array(w)

z = (x_vec.transpose()).dot(w_vec)
print(z)

z = x_vec.dot(w_vec)
print(z)
```

2.2

2.2
Interlude: "Vectorization" in Python

a) def forloop(x, w):
 z = 0.
 for i in range(len(x)):
 z += x[i] * w[i]
 return z

b) def listcomprehension(x, w):
 return sum(x_i*w_i for x_i, w_i in zip(x, w))

c) def vectorized(x, w):
 return x_vec.dot(w_vec)

x, w = np.random.rand(100000), np.random.rand(100000)

Questions for you:
Which one is the fastest?
How much faster is the fastest one compared to the slowest one?
Interlude: "Vectorization" in Python

In [6]:
```python
%timeit -r 100 -n 10 forloop(x, w)
```

38.9 ms ± 1.32 ms per loop (mean ± std. dev. of 100 runs, 10 loops each)

In [7]:
```python
%timeit -r 100 -n 10 listcomprehension(x, w)
```

29.7 ms ± 842 µs per loop (mean ± std. dev. of 100 runs, 10 loops each)

In [8]:
```python
%timeit -r 100 -n 10 vectorized(x_vec, w_vec)
```

46.8 µs ± 8.07 µs per loop (mean ± std. dev. of 100 runs, 10 loops each)
Interlude: Connections and Parallel Computation

NVIDIA Volta with approx. 2.1×10^{10} transistors
approx. only 10 connections per transistor

Brain with 1.6×10^{10} neurons
$10^4 - 10^5$ connections per neuron
approx. 10^{15} connections in total
THE WORLD’S FASTEST SUPERCOMPUTER BREAKS AN AI RECORD

https://www.wired.com/story/worlds-fastest-supercomputer-breaks-ai-record/

> 27,000 GPUs
"billion billion" operations per second (exaflop)

“Deep learning has never been scaled to such levels of performance before,” says Prabhat (research group leader at Berkeley National Lab)

Application: Weather patterns (three-hour forecasts)
AI Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for AI landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

https://www.wired.com/story/ai-great-things-burn-planet/
Perceptron Learning Rule

Assume binary classification task, Perceptron finds decision boundary if classes are separable.

The Perceptron Learning Algorithm

- If correct: Do nothing if the prediction if output is equal to the target

- If incorrect, scenario a):
 If output is 0 and target is 1, add input vector to weight vector

- If incorrect, scenario b):
 If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists
(more about that later…)
The Perceptron Learning Algorithm

Let
\[D = (\langle x^{[1]}, y^{[1]} \rangle, \langle x^{[2]}, y^{[2]} \rangle, \ldots, \langle x^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n \]

1. Initialize \(w := 0^m \) (assume notation where weight incl. bias)

2. For every training epoch:

 A. For every \(\langle x^{[i]}, y^{[i]} \rangle \in D \):

 (a) \(\hat{y}^{[i]} := \sigma(x^{[i]T} w) \)

 (b) \(\text{err} := (y^{[i]} - \hat{y}^{[i]}) \)

 (c) \(w := w + \text{err} \times x^{[i]} \)
Perceptron Coding Example

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-pytorch.ipynb
Optional: Perceptron Convergence Theorem

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem
4/5 -- Geometric intuition
5/5 -- HW1
Perceptron Convergence Theorem

Let

\[\mathcal{D} = (\langle \mathbf{x}^{[1]}, y^{[1]} \rangle, \langle \mathbf{x}^{[2]}, y^{[2]} \rangle, \ldots, \langle \mathbf{x}^{[n]}, y^{[n]} \rangle) \in (\mathbb{R}^m \times \{0, 1\})^n \]

\[\forall y^{[i]} \in \mathcal{D}_1 : y^{[i]} = 1 \quad \text{and} \quad \mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D} \]
\[\forall y^{[i]} \in \mathcal{D}_2 : y^{[i]} = 0 \]

Assume the input vectors come from two linearly separable classes such that a feasible weight vector \(\mathbf{w}^* \) exists.

The perceptron learning algorithm is guaranteed to converge to a weight vector in the feasible region in a finite number of iterations such that

\[\forall \mathbf{x}^{[i]} \in \mathcal{D}_1 : \mathbf{w}^\top \mathbf{x}^{[i]} > 0 \]
\[\forall \mathbf{x}^{[i]} \in \mathcal{D}_2 : \mathbf{w}^\top \mathbf{x}^{[i]} \leq 0 \]
Perceptron Convergence Theorem -- Proof

Let us slightly rewrite the update rule (upon misclassification) for convenience when we construct the proof:

\[w^{[i+1]} = w^{[i]} + x^{[i]} \quad \text{if} \quad (w^{[i]})^T x^{[i]} \leq 0 , x^{[i]} \in D_1 \]

\[w^{[i+1]} = w^{[i]} - x^{[i]} \quad \text{if} \quad (w^{[i]})^T x^{[i]} > 0 , x^{[i]} \in D_2 \]

Here \([i + 1]\) refers to the weight vector of the next training example (that is, the weight after updating)
Perceptron Convergence Theorem -- Proof

From the previous slide:

$$w[i+1] = w[i] + x[i] \quad \text{if} \quad (w[i])^T x[i] \leq 0, x[i] \in D_1$$

We can rewrite this as follows:

$$w[i+1] = w[0] + x[1] + \ldots + x[i]$$

Also, we can drop this term if we initialize the weight vector as 0^m

$$w[i+1] = x[1] + \ldots + x[i]$$
Perceptron Convergence Theorem -- Proof

From the previous slide, the update rule:

$$\mathbf{w}^{[i+1]} = \mathbf{x}^{[1]} + \ldots + \mathbf{x}^{[i]}$$

Let's multiply both sides by \mathbf{w}^*:

$$(\mathbf{w}^*)^T \mathbf{w}^{[i+1]} = (\mathbf{w}^*)^T \mathbf{x}^{[1]} + \ldots + (\mathbf{w}^*)^T \mathbf{x}^{[i]}$$

All these terms are > 0, because remember that we have

$$\mathbf{w}^{[i+1]} = \mathbf{w}^{[i]} + \mathbf{x}^{[i]} \quad \text{if} \quad (\mathbf{w}^{[i]})^T \mathbf{x}^{[i]} \leq 0 \quad \forall \mathbf{x}^{[i]} \in \mathcal{D}_1$$

so the updates are all to make the net inputs more positive

Now, let

$$\alpha = \min_{\mathbf{x}^{[j]}} (\mathbf{w}^*)^T \mathbf{x}^{[j]} , \ j = 1, \ldots , i$$

then

$$(\mathbf{w}^*)^T \mathbf{w}^{[i+1]} \geq \alpha i$$
Perceptron Convergence Theorem -- Proof

From the previous slide, we had the inequality:

\[
(w^*)^T w^{[i+1]} \geq \alpha i
\]

Using the Cauchy-Schwarz inequality, we can then say

\[
\|w^*\|^2 \cdot \|w^{[i+1]}\|^2 \geq ((w^*)^T w^{[i+1]})^2
\]

as well as

\[
\|w^*\|^2 \cdot \|w^{[i+1]}\|^2 \geq (\alpha i)^2
\]

So, we can finally define the lower bound of the size of the weights

\[
\|w^{[i+1]}\|^2 \geq \frac{\alpha^2 i^2}{\|w^*\|^2}
\]
Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights, let us get the upper bound.

For that, let's go back to the update rule

$$w^{[i+1]} = w^{[i]} + x^{[i]} \quad \text{if} \quad (w^{[i]})^T x^{[i]} \leq 0 , x^{[i]} \in D_1$$

and apply the squared L2 norm on both sides

$$\|w^{[i+1]}\|^2 = \|w^{[i]} + x^{[i]}\|^2$$

$$= \|w^{[i]}\|^2 + 2(x^{[i]})^T w^{[i]} + \|x^{[i]}\|^2$$
Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights, let us get the upper bound.

For that, let's go back to the update rule

\[w^{[i+1]} = w^{[i]} + x^{[i]} \quad \text{if} \quad (w^{[i]})^T x^{[i]} \leq 0, x^{[i]} \in D_1 \]

and apply the squared L2 norm on both sides

\[
\|w^{[i+1]}\|^2 = \|w^{[i]} + x^{[i]}\|^2 \\
= \|w^{[i]}\|^2 + 2(x^{[i]})^T w^{[i]} + \|x^{[i]}\|^2
\]

Leads to

\[
\|w^{[i+1]}\|^2 \leq \|w^{[i]}\|^2 + \|x^{[i]}\|^2
\]
Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights, let us get the upper bound.

For that, let's go back to the update rule

\[
\mathbf{w}^{[i+1]} = \mathbf{w}^{[i]} + \mathbf{x}^{[i]} \quad \text{if} \quad (\mathbf{w}^{[i]})^T \mathbf{x}^{[i]} \leq 0, \quad \mathbf{x}^{[i]} \in D_1
\]

and apply the squared L2 norm on both sides

\[
\|\mathbf{w}^{[i+1]}\|^2 = \|\mathbf{w}^{[i]} + \mathbf{x}^{[i]}\|^2
\]

\[
= \|\mathbf{w}^{[i]}\|^2 + 2(\mathbf{x}^{[i]})^T \mathbf{w}^{[i]} + \|\mathbf{x}^{[i]}\|^2 \quad \text{implies}
\]

\[
\leq 0
\]

Thus

\[
\|\mathbf{w}^{[i+1]}\|^2 \leq \|\mathbf{w}^{[i]}\|^2 + \|\mathbf{x}^{[i]}\|^2
\]
Perceptron Convergence Theorem -- Proof

Now, we simply expand:

$$\|\mathbf{w}^{[i+1]}\|^2 \leq \|\mathbf{w}^{[i]}\|^2 + \|\mathbf{x}^{[i]}\|^2$$

$$\|\mathbf{w}^{[i+1]}\|^2 \leq \|\mathbf{w}^{[i-1]}\|^2 + \|\mathbf{x}^{[i-1]}\|^2 + \|\mathbf{x}^{[i]}\|^2$$

$$\|\mathbf{w}^{[i+1]}\|^2 \leq \|\mathbf{w}^{[i-2]}\|^2 + \|\mathbf{x}^{[i-2]}\|^2 + \|\mathbf{x}^{[i-1]}\|^2 + \|\mathbf{x}^{[i]}\|^2$$

$$\vdots$$

$$\|\mathbf{w}^{[i+1]}\|^2 \leq \|\mathbf{w}^{[1]}\|^2 + \sum_{j=1}^{i} \|\mathbf{x}^{[j]}\|^2$$

$$\|\mathbf{w}^{[i+1]}\|^2 \leq \sum_{j=1}^{i} \|\mathbf{x}^{[j]}\|^2$$
Perceptron Convergence Theorem -- Proof

From \[\|w^{[i+1]}\|^2 \leq \sum_{j=1}^{i} \|x^{[j]}\|^2 \] we can finally get the upper bound.

Let \[\beta = \max \|x^{[j]}\|^2 \]

then \[\|w^{[i+1]}\|^2 \leq \beta i \]
Perceptron Convergence Theorem -- Proof

lower bound

\[
\|w^{[i+1]}\|^2 \geq \frac{\alpha^2 i^2}{\|w^*\|^2}
\]

upper bound

\[
\|w^{[i+1]}\|^2 \leq \beta i
\]

combined

\[
\beta_i \geq \|w^{[i+1]}\|^2 \geq \frac{\alpha^2 i^2}{\|w^*\|^2}
\]

\[
i \leq \frac{\beta \|w^*\|^2}{\alpha^2}
\]

Since the number of iterations \(i\) has an upper bound, we can conclude that the weights only change a finite number of times and will converge if the classes are linearly separable.

\qed
Perceptron Convergence Theorem -- Proof

\[\beta i \geq \| w^{[i+1]} \|^2 \geq \alpha^2 i^2 \]
Perceptron Convergence Theorem -- Proof

In the convergence theorem, we can assume that $\|w^*\| = 1$
(so you may remove it from all equations)

$$
\beta_i \geq \|w[i+1]\|^2 \geq \frac{\alpha^2 i^2}{\|w^*\|^2} \iff \beta_i \geq \|w[i+1]\|^2 \geq \alpha^2 i^2
$$

$$
i \leq \frac{\beta \|w^*\|^2}{\alpha^2} \iff i \leq \frac{\beta}{\alpha^2}
$$
Geometric Intuition Behind the Perceptron

1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem
4/5 -- Geometric intuition
5/5 -- HW1
Decision boundary

Weight vector is perpendicular to the boundary. Why?
Geometric Intuition

Decision boundary

Weight vector is perpendicular to the boundary. Why?

Remember,

\[\hat{y} = \begin{cases}
0, & \mathbf{w}^T \mathbf{x} \leq 0 \\
1, & \mathbf{w}^T \mathbf{x} > 0
\end{cases} \]

\[
\mathbf{w}^T \mathbf{x} = \| \mathbf{w} \| \cdot \| \mathbf{x} \| \cdot \cos(\theta)
\]

So this needs to be 0 at the boundary, and it is zero at 90°.
Geometric Intuition

What else does this mean?

Every input vector on this side will have an angle with the weight vector that is $< 90^\circ$

Assume origin $(0, 0)$ and no bias

So, we could scale the weights and/or inputs by an arbitrary factor and still get the same classification results (but large inputs will take much longer to converge if you check the bounds we defined previously ...)
Geometric Intuition

The dot product will then be positive, i.e., > 0, since

$$\mathbf{w}^T \mathbf{x} = ||\mathbf{w}|| \cdot ||\mathbf{x}|| \cdot \cos(\theta)$$
Geometric Intuition

input vector for an example with label 0

weight vector must be somewhere such that the angle is ≥ 90 degrees to make a correct prediction

The dot product will then ≤ 0, since

$$w^T x = ||w|| \cdot ||x|| \cdot \cos(\theta)$$
Geometric Intuition

For this weight vector, we make a wrong prediction; hence, we update.
Perceptron Conclusions

The (classic) Perceptron has many problems
(as discussed in the previous lecture)

- Linear classifier, no non-linear boundaries possible
- Binary classifier, cannot solve XOR problems, for example
- Does not converge if classes are not linearly separable
- Many "optimal" solutions in terms of 0/1 loss on the training data, most will not be optimal in terms of generalization performance
[…] Where a perceptron had been trained to distinguish between - this was for military purposes - it was looking at a scene of a forest in which there were camouflaged tanks in one picture and no camouflaged tanks in the other. And the perceptron - after a little training - made a 100% correct distinction between these two different sets of photographs. Then they were embarrassed a few hours later to discover that the two rolls of film had been developed differently. And so these pictures were just a little darker than all of these pictures and the perceptron was just measuring the total amount of light in the scene. But it was very clever of the perceptron to find some way of making the distinction.

-- Marvin Minsky, Famous AI researcher, Author of the famous "Perceptrons" book

Source: https://www.webofstories.com/play/marvin.minsky/122
An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the squared error in least-squares regression, except that we have targets and outputs:

\[
\mathcal{L}(w, b) = \sum_i \frac{1}{2} (\hat{y}[i] - y[i])^2
\]

\[
\hat{y} = \sigma(w^T x + b) = \begin{cases}
0, & w^T x + b \leq 0 \\
1, & w^T x + b > 0
\end{cases}
\]
An Analogy to Future Lectures …

We can say the perceptron optimizes a loss function analogous to the squared error in least-squares regression, except that we have targets and outputs:

$$\mathcal{L}(\mathbf{w}, b) = \sum_i \frac{1}{2} (\hat{y}^{[i]} - y^{[i]})^2$$

where

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} 0, & \mathbf{w}^T \mathbf{x} + b \leq 0 \\ 1, & \mathbf{w}^T \mathbf{x} + b > 0 \end{cases}$$

$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial}{\partial w_j} \sum_i (\hat{y}^{[i]} - y^{[i]})^2$$

$$= \frac{\partial}{\partial w_j} \sum_i (\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]})^2$$

$$= \sum_i 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \frac{\partial}{\partial w_j} (\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]})$$

$$= \sum_i 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \sigma'(\mathbf{w}^T \mathbf{x}^{[i]}) \frac{\partial}{\partial w_j} \mathbf{w}^T \mathbf{x}^{[i]}$$

$$= \sum_i 2(\sigma(\mathbf{w}^T \mathbf{x}^{[i]}) - y^{[i]}) \sigma'(\mathbf{w}^T \mathbf{x}^{[i]}) x_j^{[i]}$$
An Analogy to Future Lectures ...

We can say the perceptron optimizes a loss function analogous to the squared error in least-squares regression, except that we have targets and outputs:

\[\mathcal{L}(w, b) = \sum_i \frac{1}{2} (\hat{y}_i - y_i)^2 \]

where \(\hat{y} = \sigma(w^T x + b) = \begin{cases} 0, & w^T x + b \leq 0 \\ 1, & w^T x + b > 0 \end{cases} \)

\[
\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial}{\partial w_j} \sum_i (\hat{y}_i - y_i)^2 \\
= \frac{\partial}{\partial w_j} \sum_i (\sigma(w^T x_i) - y_i)^2 \\
= \sum_i 2(\sigma(w^T x_i) - y_i) \sigma'(w^T x_i) \frac{\partial}{\partial w_j} (w^T x_i) \\
= \sum_i 2(\sigma(w^T x_i) - y_i) \sigma'(w^T x_i) w^T x_i \\
= \sum_i 2(\sigma(w^T x_i) - y_i) \sigma'(w^T x_i) x_i \\
\text{not differentiable!}
\]
An Analogy to Future Lectures …

We can say the perceptron optimizes a loss function analogous to the squared error in least-squares regression, except that we have targets and outputs:

\[L(w, b) = \sum_i \frac{1}{2} (\hat{y}^i - y^i)^2 \]

where \(\hat{y} = \sigma(w^T x + b) = \begin{cases} 0, & w^T x + b \leq 0 \\ 1, & w^T x + b > 0 \end{cases} \)

\[
\frac{\partial L}{\partial w_j} = \frac{\partial}{\partial w_j} \sum_i (\hat{y}^i - y^i)^2 \\
= \frac{\partial}{\partial w_j} \sum_i (\sigma(w^T x^i) - y^i)^2 \\
= \sum_i 2(\sigma(w^T x^i) - y^i) \frac{\partial}{\partial w_j} (\sigma(w^T x^i) - y^i) \\
= \sum_i 2(\sigma(w^T x^i) - y^i) \sigma'(w^T x^i) \frac{\partial}{\partial w_j} w^T x^i \\
= \sum_i 2(\sigma(w^T x^i) - y^i) \sigma'(w^T x^i)x_j^i
\]

not differentiable!

However, perceptron does something very similar to stochastic gradient descent:

\[
\frac{\partial L}{\partial w_j} = (y^i - \hat{y}^i)x_j \\
\]

\[
w_j := w_j + \frac{\partial L}{\partial w_j}
\]

(not a real derivative)
On Deep Learning vs How the Brain Works

MARTIN FORD: You gave an interview toward the end of 2017 where you said that you were suspicious of the backpropagation algorithm and that it needed to be thrown out and we needed to start from scratch. That created a lot of disturbance, so I wanted to ask what you meant by that?

GEOFFREY HINTON: The problem was that the context of the conversation wasn’t properly reported. I was talking about trying to understand the brain, and I was raising the issue that backpropagation may not be the right way to understand the brain. We don’t know for sure, but there are some reasons now for believing that the brain might not use backpropagation. I said that if the brain doesn’t use backpropagation, then whatever the brain is using would be an interesting candidate for artificial systems. I didn’t at all mean that we should throw out backpropagation. Backpropagation is the mainstay of all the deep learning that works, and I don’t think we should get rid of it.

1 See: https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4b47-a9b2-7a4c310a28fe.html

(Excerpt from "Architects of Intelligence")
1/5 -- Brains and neuron models
2/5 -- The perceptron learning rule
3/5 -- Optional: The perceptron convergence theorem
4/5 -- Geometric intuition
5/5 -- HW1

Your First Homework!

Homework Assignment 1

Your task:
Based on the NumPy example,
implement Perceptron code into pure Python to become more familiar of
how PyTorch/NumPy (and the Perceptron) works
(=> no NumPy, no PyTorch, etc.)

1) Download code from:
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/hw01

2) Submit solution via Canvas for grading (submission deadline will be announced)