Lecture 05

Fitting Neurons with
Gradient Descent

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka
http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

DISCUSS HOMEWORK

Sebastian Raschka STAT 479: Machine Learning FS 2018

- hardmaru
« @hardmaru

How do people come up with all these crazy
deep learning architectures?
reddit.com/r/MachinelLearn...

Brudaks 153 points

A popular method for designing deep learning architectures is GDGS (gradient
descent by grad student).

This is an iterative approach, where you start with a straightforward baseline
architecture (or possibly an earlier SOTA), measure its effectiveness; apply
various modifications (e.g. add a highway connection here or there), see what
works and what does not (i.e. where the gradient is pointing) and iterate further
on from there in that direction until you reach a (local?) optimum.

https://twitter.com/hardmaru/status/876303574900264960

Also known as "graduate student descent"

A learning rule that is more robust than the perceptron:

always converges even if the

data is not (linearly) separable

Our Goals

Combine multiple neurons and layers of neurons

("deep neural nets") to learn more complex decision

20 40 60 80 100 120

: model.eval()
logits, probas = model(features.to(device)[0, None])
print('Probability Female %.2f%%' % (probas[0][0]%*100))

Probability Female 99.71%

boundaries (because most real-world problems are not

"linear" problems!)

Handle multiple categories (not just binary) in classification

Do even fancier things like generating NEW images and text

Class Label 8
0

Age: 30

NI

3

7

¢

kZiRK-

2|

o

0 % 0 % 0
Class Label 9
0

25 0

25 0

%5 0

%5 0 25 0

%5 0

%5 0

25

SR

7

E

7

919

9

9

0 % 0 %5 0

Sebastian Raschka

25 0

25 0

%5 0

%5 0 25 0

%5 0

%5 0

25

STAT 479: Deep Learning SS 2019 4

Our Goals

A learning rule that is more robust than the perceptron:
always converges even if the

data is not (linearly) separable

Combine multiple neurons and layers of neurons

("deep neural nets") to learn more complex decision
boundaries (because most real-world problems are not
"linear" problems!)

Handle multiple categories (not just binary) in classification *NGX’E lecture(s)

Do even fancier things like generating NEW images and text * More towards the

end of the course

Class Label 8 W

0

B 9?3 |\ ¥Fglo b 22 All based on the same learning

0 %5 0 %5 0 25 0 25 0 %0 % 0 25 0 % 0 % 0 5 algorithm and extensions
Class Label 9 thereOf.

0

711 ULIFIF]1919/19] 9 So, this is prob. the most

0 % 0 % 0 %50 %50 5 0 2% 0 %5 0 % 0 % 0 % fundamental lecture!
Sebastian Raschka STAT 479: Deep Learning SS 2019 5

Good news:

o After this lecture, there won't be any
"new" mathematical concepts.

e Everything in DL will be extensions &
applications of these basic concepts.

Perceptron Recap

AN Activation o (Z Tw; + b) — (XTW + b) _ @
N 1=1
@ (P B_' /
Output
: Net input a(z) _ {O’ <0
1, z>0
b= —60

Inputs

Let D = ((xI",), (xPyB), . (x7,gl")) € (R™ x {0, 1})"
1. Initialize w:=0""1 b:=0
2. For every training epoch:

A. For every <X[i],y[i]> cD -

(a) 9= O'(X[i]TW +b) < Compute output (prediction)

A

(b) err:= (y[i] — y[i]) < Calculate error

1

(c) w:=w+errx x| b := b+ err «— Update parameters

General Learning Principle

Let D= ((x",yM), (xZ,y2), ... (x" y")) € R™ x {0,1})"

"On-line" mode

_ This applies to all common neuron
1. Initialize w:=0""1 b:=0 o

models and (deep) neural network

2. For every training epoch:

A. Forevery (xl yliy e D .

architectures!

(a) Compute output (prediction) There are some variants of it, namely the

(b) Calculate error "batch mode" and the "minibatch mode"

b which we will briefly go over in the next
(c) Update w,

slides and then discuss more later

Sebastian Raschka STAT 479: Deep Learning SS 2019 8

General Learning Principle

Let D= ((x",yM), (xZ,y2), ... (x" y")) € R™ x {0,1})"

"On-line" mode Batch mode
1. Initiaize w:=0""1, b:=0 1. Initialize w:=0""1,b:=0
2. For every training epoch: 2. For every training epoch:
A, Forevery (x4l e D . A. Initialize Aw :=0, Ab:=0

B. Forevery (x4 ¢y e D:
(a) Compute output (prediction) Y < Y >

(b) Calculate error (a) Compute output (prediction)

(c) Upd b (b) Calculate error
C pdate W,

(c) Update Aw, Ab

C. Update W, b:
w:=w+ Aw, b := +Ab

General Learning Principle

et

"On-line" mode

w:=0""1 b:=0

2. For every training epoch:

1. Initialize

A. Forevery (xl yliy e D .

(a) Compute output (prediction)
(b) Calculate error

(c) Update w,b

In practice, we usually shuffle the

dataset prior to each epoch
to prevent cycles

Sebastian Raschka

1. Initialize

D= (<X[1]7y[1]>7 <X[2]7y[2]>7 e <X[n]7y[n]>) = (Rm X {O’ 1})”

Batch mode

w:=0""1 b:=0

2. For every training epoch:

A.
B.

C.

STAT 479: Deep Learning

Initialize Aw :=0, Ab:=0
For every <x[i],y[i]> cD:

(a) Compute output (prediction)
(b) Calculate error

(c) Update Aw,Ab

Update W, b:
w:=w+ Aw,b:=+Ab

SS 2019

10

General Learning Principle

Let D= ((x",yM), (xZ,y2), ... (x" y")) € R™ x {0,1})"

"On-line" mode "On-line" mode Il (alternative)
1. Initialize w:=0""1 b:=0 1. Initialize Ww:=0""1 b:=0
2. For every training epoch: 2. For for T iterations:

A. For every <x[i],y[i]> cD - A. Pick random <X[i],y[i]> cD:

(a) Compute output (prediction) (a) Compute output (prediction)

(b) Calculate error (b) Calculate error

(c) Update wW,b (c) Update wW,b

stochastic

I 3 :
semi'-stochastic (actually, not really stochastic because a fixed training

set instead of sampling from the population)

11

1.
2.

General Learning Principle
Let D= ((x!t, 4t (xI& 2 (xl" gy e (R™ x {0,1})"

Minibatch mode

(mix between on-line and batch)

Initialize W :=0m"1 b:=0

For every training epoch:

The most common mode in

deep learning. Any ideas why?

A. Initialize Aw :=0, Ab:=0

B. For every { (x!" oy, (xlTFL kL = D
(a) Compute output (prediction)
(b) Calculate error
(c) Update Aw,Ab

C. Update W, b :
w:=w+Aw,b:= +Ab

12

1.
2.

General Learning Principle
Let D= ((x!t, 4t (xI& 2 (xl" gy e (R™ x {0,1})"

Minibatch mode

(mix between on-line and batch)

Initialize

For every training epoch:

A.
B.

C.

Initialize Aw :(=0, Ab:=0
For every { (x!"h ylihy . (xlHHL L D

(a) Compute output (prediction)

(b) Calculate error
(c) Update Aw,Ab

Update W, b :
w:=w+Aw,b:= +Ab

Most commonly used in DL, because

w:=0""1 b:=0

1.

Choosing a subset (vs 1
example at a time)
takes advantage of
vectorization (faster
iteration through epoch
than on-line)

having fewer updates
than "on-line" makes
updates less noisy

makes more updates/
epoch than "batch" and
is thus faster

13

Linear Regression

Perceptron: Activation function is the threshold function

/ The output is a binary label 3 € {0,1}

Activation

}:)utput
Net input \

Linear Regression: Activation function is the identity function

Inputs

o(r) =1
The output is a real number ¥ € R

14

Linear Regression

Perceptron: Activation function is the threshold function

The output is a binary label 3 € {0,1}

Activation

You can think of this as a
a—> Y linear neuron!
Output
Net input
W, \

Linear Regression: Activation function is the identity function

Inputs

o)==
The output is a real number ¥ € R

Sebastian Raschka STAT 479: Deep Learning SS 2019 15

(Least-Squares) Linear Regression

In earlier statistics classes, you probably fit a model like this:
using the "normal equations:"

_ implying that the bias is included, and the
W — (XTX) 1XTy (plying

design matrix has an additional vector of 1's)

16

(Least-Squares) Linear Regression

In earlier statistics classes, you probably fit a model like this:
using the "normal equations:"

(implying that the bias is included, and the
design matrix has an additional vector of 1's)

w=(X"X)"'X"y

e Generally, this is the best approach for linear regression (although,
the matrix inversion might be problematic on large datasets)

e However, we will now learn about another way to learn these
parameters iteratively

e Why? Because this is what we will be doing in deep neural nets
later, where we have large datasets, many connections, and non-
convex loss functions

17

(Least-Squares) Linear Regression

e A very naive way to fit a linear regression model (and any neural net)
Is to start with all-zero or random parameters
e Then, for k rounds
e Choose another random set of weights
e |f the model performs better, keep those weights
e |f the model performs worse, discard the weights

This approach is guaranteed to find the optimal solution
for very large k, but it would be terribly slow.

18

(Least-Squares) Linear Regression

A very naive way to fit a linear regression model (and any neural net)

Is to start with all-zero or random parameters
Then, for k rounds

e Choose another random set of weights
e |f the model performs better, keep those weights
e |f the model performs worse, discard the weights

There's a better way!

We will analyze what effect a change of a parameter has on the
predictive performance (loss) of the model
then, we change the weight a little bit in the direction that

improves the performance (minimizes the loss) the most

We do this in several (small) steps until the loss does not further
decrease

Sebastian Raschka STAT 479: Deep Learning SS 2019

19

1.
2.

(Least-Squares) Linear Regression

The update rule turns out to be this:

Initialize W = Om_l " b:=0

"On-line" mode

1. Initialize WwW:=0""1 b:=0

2. For every training epoch:

For every training epoch:

A.

For every <X[Z],y[z]> c D or every (X", y**)

(a) Q[i] = U(XmTW + b)
() Vool = (yl — gli)xli
VL = (y[i] _ g[i])

(a) gl = O'(XMTW +b)
(b) err:= (y — gl

(c) w:=w+err x x4

b:=b+err () w:=w+nx(-VaLl)
b:=b+nx(=VpL)
. /Ty
learning rate T

negative gradient

20

(Least-Squares) Linear Regression

The update rule turns out to be this:

"On-line" mode:

Vectorized For-Loop
1. Initialize w:=0""1,b:=0 1. Initialize Ww:=0""1 b:=0
2. For every training epoch: 2. For every training epoch:
A. For every <X[i],ym> cD A. For every <X[i],ym> cD
(a) gl .= O‘(X[i]TW + b) @ (a) gl = U(XMTW + b)
(b) VoLl = ?f]gm _[‘]?;[i])x[i] [B. For weight jin {1, ..., m}]
VL = (y —Y) (b) a_ﬁ _ _(y[i] - @[i])x[?]
(c) wi=w+n X (=VxL) Ow !
oL
b:=b+nx(=VpL) (c) wj i=w; +1n X (_87)
7T 0L i) _ gl ’
learning rate C. — = — (" =9")
g ! 9 3

negative gradient b:=b+n X (—%)

21

(Least-Squares) Linear Regression

The update rule turns out to be this:

"On-line" mode

1. Initialize WwW:=0""1 b:=0

2. For every training epoch:

: : Coincidentally, this appears almost
A F 3] L] !
o every <X Y > €D to be the same as the perceptron rule,

(a) gl .= U(X[i]TW 4 b) except that the prediction is a real number

and we have a learning rate

B. For weight jin {1, ..., m}:
(b) 9L :(E(y[i] — gl /

awj J
(c) wj:=w;+n Auw;
oL N
C. T —(ym — y[])
b:=b+n X (_8_£)
‘ ' b

22

This learning rule (from the previous slide)
is called (stochastic) gradient descent.
So, how did we get there?

23

DISCUSS HOMEWORK

Due next Thursday (Feb 21) 11:59 pm

https://github.com /rasbt/stat479-deep-learning-ss19/blob /master/hw2 /hw2.ipynb

(explain LaTeX editing)

Sebastian Raschka STAT 479: Machine Learning FS 2018

24

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/hw2/hw2.ipynb

First, let's briefly cover relevant background
info ...

25

Differential Calculus Refresher

Derivative of a function = "rate of change"

slope"

20

Function Derivative

R B (RO €

dr Az—0 Ax

Example 1: f(z) = 2z

dr Azx—0 Ax
, 20 + 2Ax — 2x
= lim

Ax—0 AQZ‘

27

Numerical vs Analytical/Symbolical Derivatives

ooy df . flz+ Ax) — f(z)
f(w)_@_Aligo Ax

Example 2: f(z) = x*

af flz + Azx) — f(z)

—
dx A:lnrgo Ax
. 2?4+ 2zAx + (Ax)? — 2
= lim
Ax—0 Ax
. 2xAx + (Ax)?
= lim
Ax—0 ASE
= lim 2z + Azx.

Ax—0

28

Numerical vs Analytical/Symbolical Derivatives

d

Conceptually, we obtained the derivative @Qf = 2x

By approximating the slope (tangent) by a second
between two points (as before)

Secant

A Cheatsheet for You (1)

Function f(x) Derivative with respect to x

1 a 0

2 x 1

3 azx a

4 z° 2T

5 z° ax® 1

6 a” log(a)a®

7 log(x) 1/x

8 log,() 1/(xlog(a))
9 sin(x) cos(x)

10 cos(x) — sin(x)

p—
p—
CF
Qo
-
~—~
=
~—
N
@D
@)
(\)
~—~
=
~—

30

A Cheatsheet for You (2)

Function Derivative
Sum Rule f@)+g(x) f(=)+g(z)
Difference Rule f(z) — g(z) f'(x)— ¢'(x)
ProductRule f(z)g(z) f'(z)g(z) + f(z)g'(x)
QuotientRule f(2)/g(z) [9(z)f'(2) — f(z)g'(2)]/[g(z)]?
Reciprocal Rule 1/f(x) —[f"(2)]/[f(2)]?
Chain Rule flg(z)) f'(g(x))g' (x)

31

Chain Rule

e The chain rule is basically the essence of training (deep) neural
networks

e If you understand and learn how to apply the chain rule to various
function decompositions, deep learning will be super easy and even
seem trivial to you from now on

e In fact, neural networks will become even easier to understand than
any algorithm you learned about in my previous ML class

32

Chain Rule & "Computation Graph" Intuition

Decomposition of some

(nested) function:

"inner" part "outer" part

Derivative of that nested

function: X—» J — f :
Z/
X— g’

Chain Rule & "Computation Graph" Intuition

Later, we will see that PyTorch

can do that automatically for us :)
(PyTorch literally keeps a computation
graph in the background)

"inner" part "outer" part

Also, PyTorch can compute the derivatives
of most (differentiable) functions 7
automatically

34

Chain Rule & "Computation Graph" Intuition

In text, for efficiency, we will mostly use the Leibniz notation:

df dg
%[f(g(x))} — dg "y

35

Example:

substituting

d

with 7 log(g)

leads us to the solution

Chain Rule Example

d df dg
%[f(g(ff))} — dg "y

f(z) = log(vx)

df d d
— = ——log(yg

dr dg ()@\/E

1 1 d a2 _ 1 _
g Wz and —pt T T 9"
df 1 1 1

dr Jr 2+\x 2x

36

Chain Rule for Arbitrarily Long Function Compositions

dFF d d

df dg dh du dv

37

Chain Rule for Arbitrarily Long Function Compositions

dFF d d
—— = - F(@) = — f(g(h(u(v(2)))))

df dg dh du dv
dg dh du dv dx

Also called "reverse mode" as we start

with the outer function. In neural nets, this will be from
right to left.

We could also start from the inner parts ("forward mode")
dv du dh dg df

dr dv du dh dg

e Backpropagation (covered later) is basically "reverse" mode auto-differentiation
e It is cheaper than forward mode if we work with gradients, since then we have
matrix-"vector" multiplications instead of matrix multiplications

Sebastian Raschka STAT 479: Deep Learning SS 2019 38

Gradients: Derivatives of Multivariable* Functions

*note that in some fields, the terms "multivariable" and "multivariate" are used interchangeably,
but here, we really mean "multivariable" because "multivariate" means "multiple outputs", which is
not the case here -- similarly, in most DL applications output one prediction value, or one prediction

value per training example

flz,y,z,...)

of /0x
af/é)y For gradients, we use the "partial" symbol
Vf — (9f/(9z to denote partial derivatives; more of a
— notational convention and the concept is
\
: the same as before when we were
_ ' - computing ordinary derivatives (denoted

them as "d")

39

Gradients: Derivatives of Multivariable Functions

Example: f(z,y) =2’y +y

Sebastian Raschka STAT 479: Deep Learning SS 2019

40

Gradients: Derivatives of Multivariable Functions

Example: f(z,y) =2’y +y

Of /0x
Vi(z,y) = {a%ay} ,
where
of _ 0 , _
5.~ Yty =2ry
(via the power rule and constant rule), and
of _ 0

=2y +y=2a"+1.

oy Oy

So, the gradient of the function f is defined as

2xy

Vf(a:,y) — 513'2—|—1

41

Gradients: Derivative of Multivariable Functions

Example: f(z,y) =2y +y

700 A

600 -

500 A

400 A

300 A

200 A

100 A

Vi(z,y) =

2$y
2+ 1

1 X, y) =Xy +y,
where x =9

XL
Sebastian Raschka

600 -

400 A

200 A

0

STAT 479: Deep Learning

f(z,y)

800

600

Y

SS 2019

42

Gradients & the Multivariable Chain Rule

Suppose we have a composite function like this:

f(g(x), h(x))

Remember the regular chain rule for a single input:

d df dg
%[f(g(z))} — dg "y

For two inputs, we now have

d _0f dg Of dh

%[f(g(af),h(ﬂf))} = 9¢ dr " oh ds

43

Gradients & the Multivariable Chain Rule

f(g(x), h(z))

L [f o), hx)] =
of dg of ~dh

09 dxr Oh dx

Example:

f(g.h) =g"h+h
where ¢g(z) = 3z, and h(z) = z°

of

8 — = 2
8—f:29h on ~ 9 T
g

dg d 2
A > PN — = —x° =2
dr dex_S dx d:zj:v v

% flg(x))] = [29h 3]+ (9" +1) - 22]

= 22¢% + 6gh + 2x

44

Gradients & the Multivariable Chain Rule

In Vector Form

d of dg Of dh
@ [f(g(x),h(x))} — 6,_9 ' T | b . %
=V -v'(x).
Where
g(x) d [g(z)] [dg/da

v(r) = (z) vi(z) = - ha)| = |dh/dz

Putting it together:
Vv (z)= df/0g dg/dx| Of dg of ~dh

Of/Oh| |dh/dx| ~ 8¢ dr ' Oh dx

45

iX)
he Jacobian (Matr
T

f(x1,22,...,2m)

)
J(CIZ’l,ZCQ,CIjg, m

- Of1
85131

Of2
85131

Ofs
85131

9fm

— 8331

df1
8902

Of2
8902

dfs
8902

Ofm
6%2

I (5171751327333,::.
fl (5171,5172,333, o
;2 ($17:E27:E37

3

x37...
L2,
fm (xla

0 f1
8%3

O f2
8903

0 f3
8903

Ofm
82133

Lm
Lm
Lm

N— N’
N——"

Ofm

0L,

The Jacobian (Matrix)

f(Cl?l,CEQ,

J(aj17x27$37 e xm)

fi(z1, 2,23, Tp)
fo (w1, 22,23, - Tp)
,ZEm): f3 ($17x27x37”°xm)
i fm(x17$27'x37'”$m) i
- 01 91 0 f1 Of1 -
8%1 85132 8333 8CUm
Ofs Ofs Of2 O f2
6%1 6332 8333 85Um
Ofs Ofs Ofs Of3
— 0x1 Oxo Ox3 0T,
O fm Ofm O fm O fm
— (9331 8582 a$3 833m -

(Vfi)'

Second Order Derivatives

48

Lucky for you, we won't need second
order derivatives in this class ;)

49

Back to Linear Regression

@\ Activation
7 X 2|0)7
Output

Net input

Inputs

Convex loss function

L(w,b) => (" —y)?

)

50

Learning rate and
steepness of the
gradient determine
how much we update

Gradient Descent

Convex loss function

L(w,b) = (1 -yl

()

51

Gradient Descent

CA

If the learning rate is too large,

we can overshoot __—

—
>
w1
L4
If the learning rate is too small,
convergence is very slow
>
w1

Sebastian Raschka STAT 479: Deep Learning SS 2019 52

Linear Regression Loss Derivative

L(W, b) — Z(Q[Z] — y[z])Q Sum Squared Error (SSE) loss

1

O TSyl

dw; ~ ow,

8wj p
' 0 0 i
— Z 2(o(wlxl1) — y[z])%(g(WTX[hy — yli
i J
do 0
_ T [iy _ o [d] T [i]
_;2(0'(W xt) —y d(WTX[i])(?ij X
do

_ T[]y _ [7]
o Z Q(O(W X) Y) d(WTX[z]) Ly (Note that the activation function is the
identity function in linear regression)

53

Linear Regression Loss Derivative (alt.)

L(w,b) = % Z(:&[’i] _ y[’i])Q Mean Squared Error (MSE) loss often

scaled by factor 1/2 for convenience

8 1 1 1
=5 Z %(J(WTX[hy — yli)?
)
=S L (o wTxl) — i) 2 (o (wTxlily —)
—~n ow
_ 1 T iy _ iy 40 0 o
= i (o(w'x") —y w =) (9ij X
1 : : do i
- (O-(WTXM) _ y[z]) d(wT] xg] (Note that the activation function is the
" P (W X) identity function in linear regression)
1 . ;
= - (o(wTxll) — y[z])xg]

54

1.
2.

Batch vs Stochastic

The minibatch and on-line modes are stochastic

versions of gradient descent (batch mode)

Minibatch mode

(mix between on-line and batch)

Initialize

For every training epoch:

A.
B.

C.

Initialize Aw :(=0, Ab:=0
For every { (x!"h ylihy . (xlHHL L D

(a) Compute output (prediction)

(b) Calculate error
(c) Update Aw,Ab

Update W, b :
w:=w+Aw,b:= +Ab

Most commonly used in DL, because

w:=0""1 b:=0

1.

Choosing a subset (vs 1
example at a time)
takes advantage of
vectorization (faster
iteration through epoch
than on-line)

having fewer updates
than "on-line" makes
updates less noisy

makes more updates/
epoch than "batch" and
is thus faster

55

Batch Gradient Descent as Surface Plot

t £min

Updates perpendicular
to contour lines

56

Stochastic Gradient Descent as Surface Plot

£min

Stochastic updates

are a bit noisier, because

each batch is an approximation
of the overall loss on the
training set

(later, in deep neural nets, we
will see why noisier updates are
actually helpful)

>

57

Batch Gradient Descent as Surface Plot
Lmin

w1

If inputs are on very different scales

some weights will update more than
others ... and it will also harm convergence

(always normalize inputs!)

58

Linear Regression

Code example:

https://github.com/rasbt/stat479-deep-learning-ss19/blob/

master/L05 grad-descent/code/linear-regr-gd.ipynb

Sebastian Raschka STAT 479: Deep Learning

SS 2019

59

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/linear-regr-gd.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/linear-regr-gd.ipynb

ADALINE

Widrow and Hoff's ADALINE (1960)
A nicely differentiable neuron model

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits (No. TR-1553-1). Stanford Univ Ca Stanford Electronics Labs.

Widrow, B. (1960). Adaptive" adaline" Neuron Using Chemical" memistors.".

CLASSIFIED

J
| .
208 | BN

4 v 241 531

M1 :VICES TECHNICAL INFORMATION AGENCY
i ARLINGTON HALL STATION

ARLINGTON 12, VIRGINIA

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

Image source: https://www.researchgate.net/profile/Alexander_Magoun2/
publication/265789430/figure/fig2/AS:392335251787780@1470551421849/
ADALINE-ANn-adaptive-linear-neuron-Manually-adapted-synapses-Designed-

and-built-by-Ted.png APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED,

60

ADALINE

ADAptive LInear NEuron

Weight update Error \
(: —(Wq — @__, Output } Percept ron
Net input Threshold J
function function
Weight update \
(x) —(We)— @ -ouput 3 ADALINE
Net input Activation Threshold
function function function J

_—

Linear Regression

ADALINE

Code example:

https://github.com/rasbt/stat479-deep-learning-ss19/blob/

master/L05 grad-descent/code/adaline-sgd.ipynb

Sebastian Raschka STAT 479: Deep Learning

SS 2019

62

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/adaline-sgd.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/adaline-sgd.ipynb

Next Lecture:

Neurons with non-linear activation functions

63

Ungraded HW assignment

See last cell in the linear regression Jupyter Notebook

https://github.com/rasbt/stat479-deep-learning-ss19/blob/

master/L05 grad-descent/code/linear-regr-gd.ipynb

Sebastian Raschka STAT 479: Deep Learning SS 2019

64

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/linear-regr-gd.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L05_grad-descent/code/linear-regr-gd.ipynb

Reminder: GRADED HW assignment

e Due on Thu (Feb 21) at 11:59 pm
e don't need to submit whole folder, just submit .ipnyb, .html
like last time

https://github.com /rasbt/stat479-deep-learning-ss19/tree /master/hw?2

Sebastian Raschka STAT 479: Deep Learning SS 2019

65

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/hw2

